-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathlib.h
1334 lines (1109 loc) · 40.7 KB
/
mathlib.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//-----------------------------------------------------------------------------
#if !defined(MATHLIB_H)
#define MATHLIB_H
#include <cmath>
#include <cstdlib>
//-----------------------------------------------------------------------------
// Classes.
class Math
{
public:
static const float PI;
static const float HALF_PI;
static const float QUARTER_PI;
static const float TWO_PI;
static const float EPSILON;
template <typename T>
static T bilerp(const T &a, const T &b, const T &c, const T &d, float u, float v)
{
// Performs a bilinear interpolation.
// P(u,v) = e + v(f - e)
//
// where
// e = a + u(b - a)
// f = c + u(d - c)
// u in range [0,1]
// v in range [0,1]
return a * ((1.0f - u) * (1.0f - v))
+ b * (u * (1.0f - v))
+ c * (v * (1.0f - u))
+ d * (u * v);
}
static void cartesianToSpherical(float x, float y, float z,
float &rho, float &phi, float &theta)
{
// All angles are in radians.
// rho = distance from origin O to point P (i.e., length of OP)
// phi = angle between OP and the XZ plane
// theta = angle between X-axis and OP projected onto XZ plane
rho = sqrtf((x * x) + (y * y) + (z * z));
phi = asinf(y / rho);
theta = atan2f(z, x);
}
static bool closeEnough(float f1, float f2)
{
// Determines whether the two floating-point values f1 and f2 are
// close enough together that they can be considered equal.
return fabsf((f1 - f2) / ((f2 == 0.0f) ? 1.0f : f2)) < EPSILON;
}
static float degreesToRadians(float degrees)
{
return (degrees * PI) / 180.0f;
}
static long floatToLong(float f)
{
// Converts a floating point number into an integer.
// Fractional values are truncated as in ANSI C.
// About 5 to 6 times faster than a standard typecast to an integer.
long fpBits = *reinterpret_cast<const long*>(&f);
long shift = 23 - (((fpBits & 0x7fffffff) >> 23) - 127);
long result = ((fpBits & 0x7fffff) | (1 << 23)) >> shift;
result = (result ^ (fpBits >> 31)) - (fpBits >> 31);
result &= ~((((fpBits & 0x7fffffff) >> 23) - 127) >> 31);
return result;
}
static bool isPower2(int x)
{
return ((x > 0) && ((x & (x - 1)) == 0));
}
template <typename T>
static T lerp(const T &a, const T &b, float t)
{
// Performs a linear interpolation.
// P(t) = (1 - t)a + tb
// = a + t(b - a)
//
// where
// t in range [0,1]
return a + (b - a) * t;
}
static int nextMultipleOf(int multiple, int value)
{
// Returns the closest multiple of value that isn't less than value.
return multiple * ((value + (multiple - 1)) / multiple);
}
static int nextPower2(int x);
static float radiansToDegrees(float radians)
{
return (radians * 180.0f) / PI;
}
static float random(float min, float max)
{
// Returns a random number in range [min,max].
return min + (max - min)
* (static_cast<float>(rand()) / static_cast<float>(RAND_MAX));
}
static float smoothstep(float a, float b, float x)
{
// Returns a gradual transition of 'x' from 0 to 1 beginning at
// threshold 'a' and ending at threshold 'b'.
//
// References:
// [1] http://www.rendermanacademy.com/docs/smoothstep.htm
// [2] http://www.brlcad.org/doxygen/d8/d33/noise_8c-source.html
// [3] Natalya Tatarchuk, "Efficient High-Level Shader Development",
// Game Developers Conference Europe, August 2003.
if (x < a)
{
return 0.0f;
}
else if (x >= b)
{
return 1.0f;
}
else
{
x = (x - a) / (b - a);
return x * x * (3.0f - 2.0f * x);
}
}
static void sphericalToCartesian(float rho, float phi, float theta,
float &x, float &y, float &z)
{
// All angles are in radians.
// rho = distance from origin O to point P (i.e., length of OP)
// phi = angle between OP and the XZ plane
// theta = angle between X-axis and OP projected onto XZ plane
x = rho * cosf(phi) * cosf(theta);
y = rho * sinf(phi);
z = rho * cosf(phi) * sinf(theta);
}
};
//-----------------------------------------------------------------------------
// A 2-component vector class that represents a row vector.
class Vector2
{
friend Vector2 operator*(float lhs, const Vector2 &rhs);
friend Vector2 operator-(const Vector2 &v);
public:
float x, y;
static float distance(const Vector2 &pt1, const Vector2 &pt2);
static float distanceSq(const Vector2 &pt1, const Vector2 &pt2);
static float dot(const Vector2 &p, const Vector2 &q);
static Vector2 lerp(const Vector2 &p, const Vector2 &q, float t);
static void orthogonalize(Vector2 &v1, Vector2 &v2);
static Vector2 proj(const Vector2 &p, const Vector2 &q);
static Vector2 perp(const Vector2 &p, const Vector2 &q);
static Vector2 reflect(const Vector2 &i, const Vector2 &n);
Vector2() {}
Vector2(float x_, float y_);
~Vector2() {}
bool operator==(const Vector2 &rhs) const;
bool operator!=(const Vector2 &rhs) const;
Vector2 &operator+=(const Vector2 &rhs);
Vector2 &operator-=(const Vector2 &rhs);
Vector2 &operator*=(float scalar);
Vector2 &operator/=(float scalar);
Vector2 operator+(const Vector2 &rhs) const;
Vector2 operator-(const Vector2 &rhs) const;
Vector2 operator*(float scalar) const;
Vector2 operator/(float scalar) const;
float magnitude() const;
float magnitudeSq() const;
Vector2 inverse() const;
void normalize();
void set(float x_, float y_);
};
inline Vector2 operator*(float lhs, const Vector2 &rhs)
{
return Vector2(lhs * rhs.x, lhs * rhs.y);
}
inline Vector2 operator-(const Vector2 &v)
{
return Vector2(-v.x, -v.y);
}
inline float Vector2::distance(const Vector2 &pt1, const Vector2 &pt2)
{
// Calculates the distance between 2 points.
return sqrtf(distanceSq(pt1, pt2));
}
inline float Vector2::distanceSq(const Vector2 &pt1, const Vector2 &pt2)
{
// Calculates the squared distance between 2 points.
return ((pt1.x - pt2.x) * (pt1.x - pt2.x))
+ ((pt1.y - pt2.y) * (pt1.y - pt2.y));
}
inline float Vector2::dot(const Vector2 &p, const Vector2 &q)
{
return (p.x * q.x) + (p.y * q.y);
}
inline Vector2 Vector2::lerp(const Vector2 &p, const Vector2 &q, float t)
{
// Linearly interpolates from 'p' to 'q' as t varies from 0 to 1.
return p + t * (q - p);
}
inline void Vector2::orthogonalize(Vector2 &v1, Vector2 &v2)
{
// Performs Gram-Schmidt Orthogonalization on the 2 basis vectors to
// turn them into orthonormal basis vectors.
v2 = v2 - proj(v2, v1);
v2.normalize();
}
inline Vector2 Vector2::proj(const Vector2 &p, const Vector2 &q)
{
// Calculates the projection of 'p' onto 'q'.
float length = q.magnitude();
return (Vector2::dot(p, q) / (length * length)) * q;
}
inline Vector2 Vector2::perp(const Vector2 &p, const Vector2 &q)
{
// Calculates the component of 'p' perpendicular to 'q'.
float length = q.magnitude();
return p - ((Vector2::dot(p, q) / (length * length)) * q);
}
inline Vector2 Vector2::reflect(const Vector2 &i, const Vector2 &n)
{
// Calculates reflection vector from entering ray direction 'i'
// and surface normal 'n'.
return i - 2.0f * Vector2::proj(i, n);
}
inline Vector2::Vector2(float x_, float y_) : x(x_), y(y_) {}
inline bool Vector2::operator==(const Vector2 &rhs) const
{
return Math::closeEnough(x, rhs.x) && Math::closeEnough(y, rhs.y);
}
inline bool Vector2::operator!=(const Vector2 &rhs) const
{
return !(*this == rhs);
}
inline Vector2 &Vector2::operator+=(const Vector2 &rhs)
{
x += rhs.x, y += rhs.y;
return *this;
}
inline Vector2 &Vector2::operator-=(const Vector2 &rhs)
{
x -= rhs.x, y -= rhs.y;
return *this;
}
inline Vector2 &Vector2::operator*=(float scalar)
{
x *= scalar, y *= scalar;
return *this;
}
inline Vector2 &Vector2::operator/=(float scalar)
{
x /= scalar, y /= scalar;
return *this;
}
inline Vector2 Vector2::operator+(const Vector2 &rhs) const
{
Vector2 tmp(*this);
tmp += rhs;
return tmp;
}
inline Vector2 Vector2::operator-(const Vector2 &rhs) const
{
Vector2 tmp(*this);
tmp -= rhs;
return tmp;
}
inline Vector2 Vector2::operator*(float scalar) const
{
return Vector2(x * scalar, y * scalar);
}
inline Vector2 Vector2::operator/(float scalar) const
{
return Vector2(x / scalar, y / scalar);
}
inline float Vector2::magnitude() const
{
return sqrtf((x * x) + (y * y));
}
inline float Vector2::magnitudeSq() const
{
return (x * x) + (y * y);
}
inline Vector2 Vector2::inverse() const
{
return Vector2(-x, -y);
}
inline void Vector2::normalize()
{
float invMag = 1.0f / magnitude();
x *= invMag, y *= invMag;
}
inline void Vector2::set(float x_, float y_)
{
x = x_, y = y_;
}
//-----------------------------------------------------------------------------
// A 3-component vector class that represents a row vector.
class Vector3
{
friend Vector3 operator*(float lhs, const Vector3 &rhs);
friend Vector3 operator-(const Vector3 &v);
public:
float x, y, z;
static Vector3 cross(const Vector3 &p, const Vector3 &q);
static float distance(const Vector3 &pt1, const Vector3 &pt2);
static float distanceSq(const Vector3 &pt1, const Vector3 &pt2);
static float dot(const Vector3 &p, const Vector3 &q);
static Vector3 lerp(const Vector3 &p, const Vector3 &q, float t);
static void orthogonalize(Vector3 &v1, Vector3 &v2);
static void orthogonalize(Vector3 &v1, Vector3 &v2, Vector3 &v3);
static Vector3 proj(const Vector3 &p, const Vector3 &q);
static Vector3 perp(const Vector3 &p, const Vector3 &q);
static Vector3 reflect(const Vector3 &i, const Vector3 &n);
Vector3() {}
Vector3(float x_, float y_, float z_);
~Vector3() {}
bool operator==(const Vector3 &rhs) const;
bool operator!=(const Vector3 &rhs) const;
Vector3 &operator+=(const Vector3 &rhs);
Vector3 &operator-=(const Vector3 &rhs);
Vector3 &operator*=(float scalar);
Vector3 &operator/=(float scalar);
Vector3 operator+(const Vector3 &rhs) const;
Vector3 operator-(const Vector3 &rhs) const;
Vector3 operator*(float scalar) const;
Vector3 operator/(float scalar) const;
float magnitude() const;
float magnitudeSq() const;
Vector3 inverse() const;
void normalize();
void set(float x_, float y_, float z_);
};
inline Vector3 operator*(float lhs, const Vector3 &rhs)
{
return Vector3(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z);
}
inline Vector3 operator-(const Vector3 &v)
{
return Vector3(-v.x, -v.y, -v.z);
}
inline Vector3 Vector3::cross(const Vector3 &p, const Vector3 &q)
{
return Vector3((p.y * q.z) - (p.z * q.y),
(p.z * q.x) - (p.x * q.z),
(p.x * q.y) - (p.y * q.x));
}
inline float Vector3::distance(const Vector3 &pt1, const Vector3 &pt2)
{
// Calculates the distance between 2 points.
return sqrtf(distanceSq(pt1, pt2));
}
inline float Vector3::distanceSq(const Vector3 &pt1, const Vector3 &pt2)
{
// Calculates the squared distance between 2 points.
return ((pt1.x - pt2.x) * (pt1.x - pt2.x))
+ ((pt1.y - pt2.y) * (pt1.y - pt2.y))
+ ((pt1.z - pt2.z) * (pt1.z - pt2.z));
}
inline float Vector3::dot(const Vector3 &p, const Vector3 &q)
{
return (p.x * q.x) + (p.y * q.y) + (p.z * q.z);
}
inline Vector3 Vector3::lerp(const Vector3 &p, const Vector3 &q, float t)
{
// Linearly interpolates from 'p' to 'q' as t varies from 0 to 1.
return p + t * (q - p);
}
inline void Vector3::orthogonalize(Vector3 &v1, Vector3 &v2)
{
// Performs Gram-Schmidt Orthogonalization on the 2 basis vectors to
// turn them into orthonormal basis vectors.
v2 = v2 - proj(v2, v1);
v2.normalize();
}
inline void Vector3::orthogonalize(Vector3 &v1, Vector3 &v2, Vector3 &v3)
{
// Performs Gram-Schmidt Orthogonalization on the 3 basis vectors to
// turn them into orthonormal basis vectors.
v2 = v2 - proj(v2, v1);
v2.normalize();
v3 = v3 - proj(v3, v1) - proj(v3, v2);
v3.normalize();
}
inline Vector3 Vector3::proj(const Vector3 &p, const Vector3 &q)
{
// Calculates the projection of 'p' onto 'q'.
float length = q.magnitude();
return (Vector3::dot(p, q) / (length * length)) * q;
}
inline Vector3 Vector3::perp(const Vector3 &p, const Vector3 &q)
{
// Calculates the component of 'p' perpendicular to 'q'.
float length = q.magnitude();
return p - ((Vector3::dot(p, q) / (length * length)) * q);
}
inline Vector3 Vector3::reflect(const Vector3 &i, const Vector3 &n)
{
// Calculates reflection vector from entering ray direction 'i'
// and surface normal 'n'.
return i - 2.0f * Vector3::proj(i, n);
}
inline Vector3::Vector3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}
inline Vector3 &Vector3::operator+=(const Vector3 &rhs)
{
x += rhs.x, y += rhs.y, z += rhs.z;
return *this;
}
inline bool Vector3::operator==(const Vector3 &rhs) const
{
return Math::closeEnough(x, rhs.x) && Math::closeEnough(y, rhs.y)
&& Math::closeEnough(z, rhs.z);
}
inline bool Vector3::operator!=(const Vector3 &rhs) const
{
return !(*this == rhs);
}
inline Vector3 &Vector3::operator-=(const Vector3 &rhs)
{
x -= rhs.x, y -= rhs.y, z -= rhs.z;
return *this;
}
inline Vector3 &Vector3::operator*=(float scalar)
{
x *= scalar, y *= scalar, z *= scalar;
return *this;
}
inline Vector3 &Vector3::operator/=(float scalar)
{
x /= scalar, y /= scalar, z /= scalar;
return *this;
}
inline Vector3 Vector3::operator+(const Vector3 &rhs) const
{
Vector3 tmp(*this);
tmp += rhs;
return tmp;
}
inline Vector3 Vector3::operator-(const Vector3 &rhs) const
{
Vector3 tmp(*this);
tmp -= rhs;
return tmp;
}
inline Vector3 Vector3::operator*(float scalar) const
{
return Vector3(x * scalar, y * scalar, z * scalar);
}
inline Vector3 Vector3::operator/(float scalar) const
{
return Vector3(x / scalar, y / scalar, z / scalar);
}
inline float Vector3::magnitude() const
{
return sqrtf((x * x) + (y * y) + (z * z));
}
inline float Vector3::magnitudeSq() const
{
return (x * x) + (y * y) + (z * z);
}
inline Vector3 Vector3::inverse() const
{
return Vector3(-x, -y, -z);
}
inline void Vector3::normalize()
{
float invMag = 1.0f / magnitude();
x *= invMag, y *= invMag, z *= invMag;
}
inline void Vector3::set(float x_, float y_, float z_)
{
x = x_, y = y_, z = z_;
}
//-----------------------------------------------------------------------------
// A row-major 3x3 matrix class.
//
// Matrices are concatenated in a left to right order.
// Multiplies vectors to the left of the matrix.
class Matrix3
{
friend Vector3 operator*(const Vector3 &lhs, const Matrix3 &rhs);
friend Matrix3 operator*(float scalar, const Matrix3 &rhs);
public:
static const Matrix3 IDENTITY;
Matrix3() {}
Matrix3(float m11, float m12, float m13,
float m21, float m22, float m23,
float m31, float m32, float m33);
~Matrix3() {}
float *operator[](int row);
const float *operator[](int row) const;
bool operator==(const Matrix3 &rhs) const;
bool operator!=(const Matrix3 &rhs) const;
Matrix3 &operator+=(const Matrix3 &rhs);
Matrix3 &operator-=(const Matrix3 &rhs);
Matrix3 &operator*=(const Matrix3 &rhs);
Matrix3 &operator*=(float scalar);
Matrix3 &operator/=(float scalar);
Matrix3 operator+(const Matrix3 &rhs) const;
Matrix3 operator-(const Matrix3 &rhs) const;
Matrix3 operator*(const Matrix3 &rhs) const;
Matrix3 operator*(float scalar) const;
Matrix3 operator/(float scalar) const;
float determinant() const;
void fromAxes(const Vector3 &x, const Vector3 &y, const Vector3 &z);
void fromAxesTransposed(const Vector3 &x, const Vector3 &y, const Vector3 &z);
void fromHeadPitchRoll(float headDegrees, float pitchDegrees, float rollDegrees);
void identity();
Matrix3 inverse() const;
void orient(const Vector3 &from, const Vector3 &to);
void rotate(const Vector3 &axis, float degrees);
void scale(float sx, float sy, float sz);
void toAxes(Vector3 &x, Vector3 &y, Vector3 &z) const;
void toAxesTransposed(Vector3 &x, Vector3 &y, Vector3 &z) const;
void toHeadPitchRoll(float &headDegrees, float &pitchDegrees, float &rollDegrees) const;
Matrix3 transpose() const;
private:
float mtx[3][3];
};
inline Vector3 operator*(const Vector3 &lhs, const Matrix3 &rhs)
{
return Vector3((lhs.x * rhs.mtx[0][0]) + (lhs.y * rhs.mtx[1][0]) + (lhs.z * rhs.mtx[2][0]),
(lhs.x * rhs.mtx[0][1]) + (lhs.y * rhs.mtx[1][1]) + (lhs.z * rhs.mtx[2][1]),
(lhs.x * rhs.mtx[0][2]) + (lhs.y * rhs.mtx[1][2]) + (lhs.z * rhs.mtx[2][2]));
}
inline Matrix3 operator*(float scalar, const Matrix3 &rhs)
{
return rhs * scalar;
}
inline Matrix3::Matrix3(float m11, float m12, float m13,
float m21, float m22, float m23,
float m31, float m32, float m33)
{
mtx[0][0] = m11, mtx[0][1] = m12, mtx[0][2] = m13;
mtx[1][0] = m21, mtx[1][1] = m22, mtx[1][2] = m23;
mtx[2][0] = m31, mtx[2][1] = m32, mtx[2][2] = m33;
}
inline float *Matrix3::operator[](int row)
{
return mtx[row];
}
inline const float *Matrix3::operator[](int row) const
{
return mtx[row];
}
inline bool Matrix3::operator==(const Matrix3 &rhs) const
{
return Math::closeEnough(mtx[0][0], rhs.mtx[0][0])
&& Math::closeEnough(mtx[0][1], rhs.mtx[0][1])
&& Math::closeEnough(mtx[0][2], rhs.mtx[0][2])
&& Math::closeEnough(mtx[1][0], rhs.mtx[1][0])
&& Math::closeEnough(mtx[1][1], rhs.mtx[1][1])
&& Math::closeEnough(mtx[1][2], rhs.mtx[1][2])
&& Math::closeEnough(mtx[2][0], rhs.mtx[2][0])
&& Math::closeEnough(mtx[2][1], rhs.mtx[2][1])
&& Math::closeEnough(mtx[2][2], rhs.mtx[2][2]);
}
inline bool Matrix3::operator!=(const Matrix3 &rhs) const
{
return !(*this == rhs);
}
inline Matrix3 &Matrix3::operator+=(const Matrix3 &rhs)
{
mtx[0][0] += rhs.mtx[0][0], mtx[0][1] += rhs.mtx[0][1], mtx[0][2] += rhs.mtx[0][2];
mtx[1][0] += rhs.mtx[1][0], mtx[1][1] += rhs.mtx[1][1], mtx[1][2] += rhs.mtx[1][2];
mtx[2][0] += rhs.mtx[2][0], mtx[2][1] += rhs.mtx[2][1], mtx[2][2] += rhs.mtx[2][2];
return *this;
}
inline Matrix3 &Matrix3::operator-=(const Matrix3 &rhs)
{
mtx[0][0] -= rhs.mtx[0][0], mtx[0][1] -= rhs.mtx[0][1], mtx[0][2] -= rhs.mtx[0][2];
mtx[1][0] -= rhs.mtx[1][0], mtx[1][1] -= rhs.mtx[1][1], mtx[1][2] -= rhs.mtx[1][2];
mtx[2][0] -= rhs.mtx[2][0], mtx[2][1] -= rhs.mtx[2][1], mtx[2][2] -= rhs.mtx[2][2];
return *this;
}
inline Matrix3 &Matrix3::operator*=(const Matrix3 &rhs)
{
Matrix3 tmp;
// Row 1.
tmp.mtx[0][0] = (mtx[0][0] * rhs.mtx[0][0]) + (mtx[0][1] * rhs.mtx[1][0]) + (mtx[0][2] * rhs.mtx[2][0]);
tmp.mtx[0][1] = (mtx[0][0] * rhs.mtx[0][1]) + (mtx[0][1] * rhs.mtx[1][1]) + (mtx[0][2] * rhs.mtx[2][1]);
tmp.mtx[0][2] = (mtx[0][0] * rhs.mtx[0][2]) + (mtx[0][1] * rhs.mtx[1][2]) + (mtx[0][2] * rhs.mtx[2][2]);
// Row 2.
tmp.mtx[1][0] = (mtx[1][0] * rhs.mtx[0][0]) + (mtx[1][1] * rhs.mtx[1][0]) + (mtx[1][2] * rhs.mtx[2][0]);
tmp.mtx[1][1] = (mtx[1][0] * rhs.mtx[0][1]) + (mtx[1][1] * rhs.mtx[1][1]) + (mtx[1][2] * rhs.mtx[2][1]);
tmp.mtx[1][2] = (mtx[1][0] * rhs.mtx[0][2]) + (mtx[1][1] * rhs.mtx[1][2]) + (mtx[1][2] * rhs.mtx[2][2]);
// Row 3.
tmp.mtx[2][0] = (mtx[2][0] * rhs.mtx[0][0]) + (mtx[2][1] * rhs.mtx[1][0]) + (mtx[2][2] * rhs.mtx[2][0]);
tmp.mtx[2][1] = (mtx[2][0] * rhs.mtx[0][1]) + (mtx[2][1] * rhs.mtx[1][1]) + (mtx[2][2] * rhs.mtx[2][1]);
tmp.mtx[2][2] = (mtx[2][0] * rhs.mtx[0][2]) + (mtx[2][1] * rhs.mtx[1][2]) + (mtx[2][2] * rhs.mtx[2][2]);
*this = tmp;
return *this;
}
inline Matrix3 &Matrix3::operator*=(float scalar)
{
mtx[0][0] *= scalar, mtx[0][1] *= scalar, mtx[0][2] *= scalar;
mtx[1][0] *= scalar, mtx[1][1] *= scalar, mtx[1][2] *= scalar;
mtx[2][0] *= scalar, mtx[2][1] *= scalar, mtx[2][2] *= scalar;
return *this;
}
inline Matrix3 &Matrix3::operator/=(float scalar)
{
mtx[0][0] /= scalar, mtx[0][1] /= scalar, mtx[0][2] /= scalar;
mtx[1][0] /= scalar, mtx[1][1] /= scalar, mtx[1][2] /= scalar;
mtx[2][0] /= scalar, mtx[2][1] /= scalar, mtx[2][2] /= scalar;
return *this;
}
inline Matrix3 Matrix3::operator+(const Matrix3 &rhs) const
{
Matrix3 tmp(*this);
tmp += rhs;
return tmp;
}
inline Matrix3 Matrix3::operator-(const Matrix3 &rhs) const
{
Matrix3 tmp(*this);
tmp -= rhs;
return tmp;
}
inline Matrix3 Matrix3::operator*(const Matrix3 &rhs) const
{
Matrix3 tmp(*this);
tmp *= rhs;
return tmp;
}
inline Matrix3 Matrix3::operator*(float scalar) const
{
Matrix3 tmp(*this);
tmp *= scalar;
return tmp;
}
inline Matrix3 Matrix3::operator/(float scalar) const
{
Matrix3 tmp(*this);
tmp /= scalar;
return tmp;
}
inline float Matrix3::determinant() const
{
return (mtx[0][0] * (mtx[1][1] * mtx[2][2] - mtx[1][2] * mtx[2][1]))
- (mtx[0][1] * (mtx[1][0] * mtx[2][2] - mtx[1][2] * mtx[2][0]))
+ (mtx[0][2] * (mtx[1][0] * mtx[2][1] - mtx[1][1] * mtx[2][0]));
}
inline void Matrix3::fromAxes(const Vector3 &x, const Vector3 &y, const Vector3 &z)
{
mtx[0][0] = x.x, mtx[0][1] = x.y, mtx[0][2] = x.z;
mtx[1][0] = y.x, mtx[1][1] = y.y, mtx[1][2] = y.z;
mtx[2][0] = z.x, mtx[2][1] = z.y, mtx[2][2] = z.z;
}
inline void Matrix3::fromAxesTransposed(const Vector3 &x, const Vector3 &y, const Vector3 &z)
{
mtx[0][0] = x.x, mtx[0][1] = y.x, mtx[0][2] = z.x;
mtx[1][0] = x.y, mtx[1][1] = y.y, mtx[1][2] = z.y;
mtx[2][0] = x.z, mtx[2][1] = y.z, mtx[2][2] = z.z;
}
inline void Matrix3::identity()
{
mtx[0][0] = 1.0f, mtx[0][1] = 0.0f, mtx[0][2] = 0.0f;
mtx[1][0] = 0.0f, mtx[1][1] = 1.0f, mtx[1][2] = 0.0f;
mtx[2][0] = 0.0f, mtx[2][1] = 0.0f, mtx[2][2] = 1.0f;
}
inline void Matrix3::toAxes(Vector3 &x, Vector3 &y, Vector3 &z) const
{
x.set(mtx[0][0], mtx[0][1], mtx[0][2]);
y.set(mtx[1][0], mtx[1][1], mtx[1][2]);
z.set(mtx[2][0], mtx[2][1], mtx[2][2]);
}
inline void Matrix3::toAxesTransposed(Vector3 &x, Vector3 &y, Vector3 &z) const
{
x.set(mtx[0][0], mtx[1][0], mtx[2][0]);
y.set(mtx[0][1], mtx[1][1], mtx[2][1]);
z.set(mtx[0][2], mtx[1][2], mtx[2][2]);
}
inline Matrix3 Matrix3::transpose() const
{
Matrix3 tmp;
tmp[0][0] = mtx[0][0], tmp[0][1] = mtx[1][0], tmp[0][2] = mtx[2][0];
tmp[1][0] = mtx[0][1], tmp[1][1] = mtx[1][1], tmp[1][2] = mtx[2][1];
tmp[2][0] = mtx[0][2], tmp[2][1] = mtx[1][2], tmp[2][2] = mtx[2][2];
return tmp;
}
//-----------------------------------------------------------------------------
// A homogeneous row-major 4x4 matrix class.
//
// Matrices are concatenated in a left to right order.
// Multiplies vectors to the left of the matrix.
class Matrix4
{
friend Vector3 operator*(const Vector3 &lhs, const Matrix4 &rhs);
friend Matrix4 operator*(float scalar, const Matrix4 &rhs);
public:
static const Matrix4 IDENTITY;
Matrix4() {}
Matrix4(float m11, float m12, float m13, float m14,
float m21, float m22, float m23, float m24,
float m31, float m32, float m33, float m34,
float m41, float m42, float m43, float m44);
~Matrix4() {}
float *operator[](int row);
const float *operator[](int row) const;
bool operator==(const Matrix4 &rhs) const;
bool operator!=(const Matrix4 &rhs) const;
Matrix4 &operator+=(const Matrix4 &rhs);
Matrix4 &operator-=(const Matrix4 &rhs);
Matrix4 &operator*=(const Matrix4 &rhs);
Matrix4 &operator*=(float scalar);
Matrix4 &operator/=(float scalar);
Matrix4 operator+(const Matrix4 &rhs) const;
Matrix4 operator-(const Matrix4 &rhs) const;
Matrix4 operator*(const Matrix4 &rhs) const;
Matrix4 operator*(float scalar) const;
Matrix4 operator/(float scalar) const;
float determinant() const;
void fromAxes(const Vector3 &x, const Vector3 &y, const Vector3 &z);
void fromAxesTransposed(const Vector3 &x, const Vector3 &y, const Vector3 &z);
void fromHeadPitchRoll(float headDegrees, float pitchDegrees, float rollDegrees);
void identity();
Matrix4 inverse() const;
void orient(const Vector3 &from, const Vector3 &to);
void rotate(const Vector3 &axis, float degrees);
void scale(float sx, float sy, float sz);
void toAxes(Vector3 &x, Vector3 &y, Vector3 &z) const;
void toAxesTransposed(Vector3 &x, Vector3 &y, Vector3 &z) const;
void toHeadPitchRoll(float &headDegrees, float &pitchDegrees, float &rollDegrees) const;
void translate(float tx, float ty, float tz);
Matrix4 transpose() const;
private:
float mtx[4][4];
};
inline Vector3 operator*(const Vector3 &lhs, const Matrix4 &rhs)
{
return Vector3((lhs.x * rhs.mtx[0][0]) + (lhs.y * rhs.mtx[1][0]) + (lhs.z * rhs.mtx[2][0]),
(lhs.x * rhs.mtx[0][1]) + (lhs.y * rhs.mtx[1][1]) + (lhs.z * rhs.mtx[2][1]),
(lhs.x * rhs.mtx[0][2]) + (lhs.y * rhs.mtx[1][2]) + (lhs.z * rhs.mtx[2][2]));
}
inline Matrix4 operator*(float scalar, const Matrix4 &rhs)
{
return rhs * scalar;
}
inline Matrix4::Matrix4(float m11, float m12, float m13, float m14,
float m21, float m22, float m23, float m24,
float m31, float m32, float m33, float m34,
float m41, float m42, float m43, float m44)
{
mtx[0][0] = m11, mtx[0][1] = m12, mtx[0][2] = m13, mtx[0][3] = m14;
mtx[1][0] = m21, mtx[1][1] = m22, mtx[1][2] = m23, mtx[1][3] = m24;
mtx[2][0] = m31, mtx[2][1] = m32, mtx[2][2] = m33, mtx[2][3] = m34;
mtx[3][0] = m41, mtx[3][1] = m42, mtx[3][2] = m43, mtx[3][3] = m44;
}
inline float *Matrix4::operator[](int row)
{
return mtx[row];
}
inline const float *Matrix4::operator[](int row) const
{
return mtx[row];
}
inline bool Matrix4::operator==(const Matrix4 &rhs) const
{
return Math::closeEnough(mtx[0][0], rhs.mtx[0][0])
&& Math::closeEnough(mtx[0][1], rhs.mtx[0][1])
&& Math::closeEnough(mtx[0][2], rhs.mtx[0][2])
&& Math::closeEnough(mtx[0][3], rhs.mtx[0][3])
&& Math::closeEnough(mtx[1][0], rhs.mtx[1][0])
&& Math::closeEnough(mtx[1][1], rhs.mtx[1][1])
&& Math::closeEnough(mtx[1][2], rhs.mtx[1][2])
&& Math::closeEnough(mtx[1][3], rhs.mtx[1][3])
&& Math::closeEnough(mtx[2][0], rhs.mtx[2][0])
&& Math::closeEnough(mtx[2][1], rhs.mtx[2][1])
&& Math::closeEnough(mtx[2][2], rhs.mtx[2][2])
&& Math::closeEnough(mtx[2][3], rhs.mtx[2][3])
&& Math::closeEnough(mtx[3][0], rhs.mtx[3][0])
&& Math::closeEnough(mtx[3][1], rhs.mtx[3][1])
&& Math::closeEnough(mtx[3][2], rhs.mtx[3][2])
&& Math::closeEnough(mtx[3][3], rhs.mtx[3][3]);
}
inline bool Matrix4::operator!=(const Matrix4 &rhs) const
{
return !(*this == rhs);
}
inline Matrix4 &Matrix4::operator+=(const Matrix4 &rhs)
{
mtx[0][0] += rhs.mtx[0][0], mtx[0][1] += rhs.mtx[0][1], mtx[0][2] += rhs.mtx[0][2], mtx[0][3] += rhs.mtx[0][3];
mtx[1][0] += rhs.mtx[1][0], mtx[1][1] += rhs.mtx[1][1], mtx[1][2] += rhs.mtx[1][2], mtx[1][3] += rhs.mtx[1][3];
mtx[2][0] += rhs.mtx[2][0], mtx[2][1] += rhs.mtx[2][1], mtx[2][2] += rhs.mtx[2][2], mtx[2][3] += rhs.mtx[2][3];
mtx[3][0] += rhs.mtx[3][0], mtx[3][1] += rhs.mtx[3][1], mtx[3][2] += rhs.mtx[3][2], mtx[3][3] += rhs.mtx[3][3];
return *this;
}
inline Matrix4 &Matrix4::operator-=(const Matrix4 &rhs)
{
mtx[0][0] -= rhs.mtx[0][0], mtx[0][1] -= rhs.mtx[0][1], mtx[0][2] -= rhs.mtx[0][2], mtx[0][3] -= rhs.mtx[0][3];
mtx[1][0] -= rhs.mtx[1][0], mtx[1][1] -= rhs.mtx[1][1], mtx[1][2] -= rhs.mtx[1][2], mtx[1][3] -= rhs.mtx[1][3];
mtx[2][0] -= rhs.mtx[2][0], mtx[2][1] -= rhs.mtx[2][1], mtx[2][2] -= rhs.mtx[2][2], mtx[2][3] -= rhs.mtx[2][3];
mtx[3][0] -= rhs.mtx[3][0], mtx[3][1] -= rhs.mtx[3][1], mtx[3][2] -= rhs.mtx[3][2], mtx[3][3] -= rhs.mtx[3][3];
return *this;
}
inline Matrix4 &Matrix4::operator*=(const Matrix4 &rhs)
{
Matrix4 tmp;
// Row 1.
tmp.mtx[0][0] = (mtx[0][0] * rhs.mtx[0][0]) + (mtx[0][1] * rhs.mtx[1][0]) + (mtx[0][2] * rhs.mtx[2][0]) + (mtx[0][3] * rhs.mtx[3][0]);
tmp.mtx[0][1] = (mtx[0][0] * rhs.mtx[0][1]) + (mtx[0][1] * rhs.mtx[1][1]) + (mtx[0][2] * rhs.mtx[2][1]) + (mtx[0][3] * rhs.mtx[3][1]);
tmp.mtx[0][2] = (mtx[0][0] * rhs.mtx[0][2]) + (mtx[0][1] * rhs.mtx[1][2]) + (mtx[0][2] * rhs.mtx[2][2]) + (mtx[0][3] * rhs.mtx[3][2]);
tmp.mtx[0][3] = (mtx[0][0] * rhs.mtx[0][3]) + (mtx[0][1] * rhs.mtx[1][3]) + (mtx[0][2] * rhs.mtx[2][3]) + (mtx[0][3] * rhs.mtx[3][3]);
// Row 2.
tmp.mtx[1][0] = (mtx[1][0] * rhs.mtx[0][0]) + (mtx[1][1] * rhs.mtx[1][0]) + (mtx[1][2] * rhs.mtx[2][0]) + (mtx[1][3] * rhs.mtx[3][0]);
tmp.mtx[1][1] = (mtx[1][0] * rhs.mtx[0][1]) + (mtx[1][1] * rhs.mtx[1][1]) + (mtx[1][2] * rhs.mtx[2][1]) + (mtx[1][3] * rhs.mtx[3][1]);
tmp.mtx[1][2] = (mtx[1][0] * rhs.mtx[0][2]) + (mtx[1][1] * rhs.mtx[1][2]) + (mtx[1][2] * rhs.mtx[2][2]) + (mtx[1][3] * rhs.mtx[3][2]);
tmp.mtx[1][3] = (mtx[1][0] * rhs.mtx[0][3]) + (mtx[1][1] * rhs.mtx[1][3]) + (mtx[1][2] * rhs.mtx[2][3]) + (mtx[1][3] * rhs.mtx[3][3]);
// Row 3.
tmp.mtx[2][0] = (mtx[2][0] * rhs.mtx[0][0]) + (mtx[2][1] * rhs.mtx[1][0]) + (mtx[2][2] * rhs.mtx[2][0]) + (mtx[2][3] * rhs.mtx[3][0]);
tmp.mtx[2][1] = (mtx[2][0] * rhs.mtx[0][1]) + (mtx[2][1] * rhs.mtx[1][1]) + (mtx[2][2] * rhs.mtx[2][1]) + (mtx[2][3] * rhs.mtx[3][1]);
tmp.mtx[2][2] = (mtx[2][0] * rhs.mtx[0][2]) + (mtx[2][1] * rhs.mtx[1][2]) + (mtx[2][2] * rhs.mtx[2][2]) + (mtx[2][3] * rhs.mtx[3][2]);
tmp.mtx[2][3] = (mtx[2][0] * rhs.mtx[0][3]) + (mtx[2][1] * rhs.mtx[1][3]) + (mtx[2][2] * rhs.mtx[2][3]) + (mtx[2][3] * rhs.mtx[3][3]);
// Row 4.
tmp.mtx[3][0] = (mtx[3][0] * rhs.mtx[0][0]) + (mtx[3][1] * rhs.mtx[1][0]) + (mtx[3][2] * rhs.mtx[2][0]) + (mtx[3][3] * rhs.mtx[3][0]);
tmp.mtx[3][1] = (mtx[3][0] * rhs.mtx[0][1]) + (mtx[3][1] * rhs.mtx[1][1]) + (mtx[3][2] * rhs.mtx[2][1]) + (mtx[3][3] * rhs.mtx[3][1]);
tmp.mtx[3][2] = (mtx[3][0] * rhs.mtx[0][2]) + (mtx[3][1] * rhs.mtx[1][2]) + (mtx[3][2] * rhs.mtx[2][2]) + (mtx[3][3] * rhs.mtx[3][2]);
tmp.mtx[3][3] = (mtx[3][0] * rhs.mtx[0][3]) + (mtx[3][1] * rhs.mtx[1][3]) + (mtx[3][2] * rhs.mtx[2][3]) + (mtx[3][3] * rhs.mtx[3][3]);
*this = tmp;
return *this;
}
inline Matrix4 &Matrix4::operator*=(float scalar)
{
mtx[0][0] *= scalar, mtx[0][1] *= scalar, mtx[0][2] *= scalar, mtx[0][3] *= scalar;
mtx[1][0] *= scalar, mtx[1][1] *= scalar, mtx[1][2] *= scalar, mtx[1][3] *= scalar;
mtx[2][0] *= scalar, mtx[2][1] *= scalar, mtx[2][2] *= scalar, mtx[2][3] *= scalar;
mtx[3][0] *= scalar, mtx[3][1] *= scalar, mtx[3][2] *= scalar, mtx[3][3] *= scalar;
return *this;
}
inline Matrix4 &Matrix4::operator/=(float scalar)
{
mtx[0][0] /= scalar, mtx[0][1] /= scalar, mtx[0][2] /= scalar, mtx[0][3] /= scalar;
mtx[1][0] /= scalar, mtx[1][1] /= scalar, mtx[1][2] /= scalar, mtx[1][3] /= scalar;
mtx[2][0] /= scalar, mtx[2][1] /= scalar, mtx[2][2] /= scalar, mtx[2][3] /= scalar;
mtx[3][0] /= scalar, mtx[3][1] /= scalar, mtx[3][2] /= scalar, mtx[3][3] /= scalar;
return *this;