-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathknightinstructions.py
1267 lines (1005 loc) · 34.8 KB
/
knightinstructions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# A derivitive port of:
# https://github.com/oriansj/stage0/blob/master/vm_instructions.c
#
# Copyright (C) 2019 Mark Jenkins <[email protected]>
# This file is part of knightpies
#
# knightpies is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# knightpies is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with knightpies. If not, see <http://www.gnu.org/licenses/>.
from array import array
from os.path import exists
from sys import stderr, exit
from constants import \
IP, REG, MEM, HALTED, EXCEPT, PERF_COUNT, \
TAPE1FILENAME, TAPE2FILENAME, TAPEFD, TAPEFD_I_STDIN, TAPEFD_I_STDOUT, \
OP, RAW, CURIP, NEXTIP, RESTOF, INVALID, \
RAW_XOP, XOP, RAW_IMMEDIATE, IMMEDIATE, I_REGISTERS, HAL_CODE, \
CONDITION_BIT_C, CONDITION_BIT_B, CONDITION_BIT_O, \
CONDITION_BIT_GT, CONDITION_BIT_EQ, CONDITION_BIT_LT, \
HAL_IO_DATA_REGISTER, HAL_IO_DEVICE_REGISTER, HAL_IO_DEVICE_STDIO
from pythoncompat import write_byte, COMPAT_TRUE, COMPAT_FALSE
from knightdecodeutil import outside_of_world
BITS_PER_BYTE = 8
def prove_8_bits_per_array_byte():
single_byte_value = 0
# shift in 8 bits for every byte
unsigned_byte_array = array('B')
for i in range(BITS_PER_BYTE * unsigned_byte_array.itemsize):
single_byte_value = (single_byte_value<<1) | 1 # shift a 1 bit in
if unsigned_byte_array.itemsize==1:
assert single_byte_value == 0xFF
try:
unsigned_byte_array.append(single_byte_value)
except OverflowError:
# this could only happen if 1 byte was < 8 bits
assert COMPAT_FALSE
try: # now we expect this to cause an overflow
unsigned_byte_array[0]+=1
except OverflowError:
return COMPAT_TRUE
return COMPAT_FALSE
assert prove_8_bits_per_array_byte()
MAX_16_SIGNED = (2**15)-1
MAX_16_UNSIGNED = (2**16)-1
def twos_complement_conversion_w_mask(input_value, mask):
# this is a modified version of
# https://en.wikipedia.org/wiki
# /Two%27s_complement#Converting_from_two's_complement_representation
return -(input_value & mask) + (input_value & ~mask)
def make_twos_complement_converter(num_bits):
# this is a modified version of
# https://en.wikipedia.org/wiki
# /Two%27s_complement#Converting_from_two's_complement_representation
mask = 2**(num_bits-1)
def twos_complement(input_value):
return -(input_value & mask) + (input_value & ~mask)
return twos_complement
sixteenbit_twos_complement = make_twos_complement_converter(16)
def interpret_sixteenbits_as_signed(value):
if value > MAX_16_SIGNED: # would value & 0x8000 be a faster sign test?
return sixteenbit_twos_complement(value)
else:
return value
def interpret_nbits_as_signed(value, bits):
mask = 2**(bits-1)
if value > mask-1: # greater than maximum signed value
return twos_complement_conversion_w_mask(value, mask)
else:
return value
def sign_extend_16bits_unsign(value):
# see comment inside sign_extend_if_negative_and_unsign_bits
# on why python's infinite precision of sign bits makes this work
return value & 0xFFFF
def sign_extend_if_negative_and_unsign_bits(value, num_bits):
mask = (1<<num_bits)-1
assert mask == ((2**num_bits)-1)
# take advantage of the infinite sign bit precision of negative
# integers on python 2.2 and onward by bitwise AND "&" with an
# appropriate bitmask. Distinction between int (precision of C long)
# and python long (infinite precision) in python 2.2 through 2.7 isn't
# a problem her as mask will be a long if num_bits is the number of
# bits used by python 2 int and the bitwise AND operation will
# automatically up promote
# https://wiki.python.org/moin/BitwiseOperators
return value & mask
def get_instruction_size(vm, address):
c = vm[MEM][address]
if c==0xE0 or c==0xE1:
return 6
else:
return 4
def compare_immediate_to_register_ne(register_file, reg0, unsigned_immediate):
return register_file[reg0] != unsigned_immediate
def compare_immediate_to_register_e(register_file, reg0, unsigned_immediate):
return register_file[reg0] == unsigned_immediate
def compare_immediate_to_register_g_unsigned(
register_file, reg0, unsigned_immediate):
return register_file[reg0] > unsigned_immediate
def compare_immediate_to_register_ge_unsigned(
register_file, reg0, unsigned_immediate):
return register_file[reg0] >= unsigned_immediate
def compare_immediate_to_register_g_signed(
register_file, reg0, signed_immediate):
return \
interpret_nbits_as_signed(register_file[reg0],
register_file.itemsize*8) > signed_immediate
def compare_immediate_to_register_ge_signed(
register_file, reg0, signed_immediate):
return \
interpret_nbits_as_signed(register_file[reg0],
register_file.itemsize*8) >= signed_immediate
def compare_immediate_to_register_le_signed(
register_file, reg0, signed_immediate):
return interpret_nbits_as_signed(
register_file[reg0], register_file.itemsize*8) <= signed_immediate
def compare_immediate_to_register_l_signed(
register_file, reg0, signed_immediate):
return interpret_nbits_as_signed(
register_file[reg0], register_file.itemsize*8) < signed_immediate
def set_comparison_flags(tmp1, tmp2, registerfile, registerindex):
if tmp1 > tmp2:
registerfile[registerindex] = CONDITION_BIT_GT
elif tmp1 == tmp2:
registerfile[registerindex] = CONDITION_BIT_EQ
else:
registerfile[registerindex] = CONDITION_BIT_LT
def register_negative(register_file, reg0):
# naive version
#return 0 > interpret_nbits_as_signed(register_file.itemsize*BITS_PER_BYTE)
# optimize by checking the sign bit
#
# we could do better for specific register sizes by having
# 2**(nbits-1)-1 precomputed and just check if we're greater than that
return register_file[reg0]>>(register_file.itemsize*BITS_PER_BYTE-1)
def register_positive(register_file, reg0):
return not register_negative(register_file, reg0)
def writeout_bytes(mem, pointer, value, byte_count):
outside_of_world(
mem, pointer,
"Writeout bytes Address_1 is outside of World")
outside_of_world(
mem, pointer+byte_count-1,
"Writeout bytes Address_2 is outside of World")
# example invocation of range, byte_count=4 (32 bits)
# range(24, -8, -8) = [24, 16, 8, 0]
for i, x in enumerate(range( 8*(byte_count-1), -8, -8)):
mem[pointer+i] = (value>>x) & 0xff
def readin_bytes(mem, pointer, signed, byte_count):
outside_of_world(mem, pointer,
"READIN bytes Address_1 is outside of World")
outside_of_world(mem, pointer+byte_count-1,
"READIN bytes Address_2 is outside of World")
sign_bit = signed and mem[pointer] & 0x80
value_sum = mem[pointer]
for i in range(pointer+1, pointer+byte_count):
value_sum = (value_sum<<8) + mem[i]
if sign_bit:
return twos_complement_conversion_w_mask(value_sum, 2**(byte_count*8-1))
else:
return value_sum
# 4 OP integer instructions
def get_args_for_4OP(vm, c):
return (vm[MEM],
vm[REG],
c[I_REGISTERS][0], c[I_REGISTERS][1],
c[I_REGISTERS][2], c[I_REGISTERS][3],
c[NEXTIP])
def ADD_CI(vm, c):
pass
def ADD_CO(vm, c):
pass
def ADD_CIO(vm, c):
pass
def ADDU_CI(vm, c):
pass
def ADDU_CO(vm, c):
pass
def ADDU_CIO(vm, c):
pass
def SUB_BI(vm, c):
pass
def SUB_BO(vm, c):
pass
def SUB_BIO(vm, c):
pass
def SUBU_BI(vm, c):
pass
def SUBU_BO(vm, c):
pass
def SUBU_BIO(vm, c):
pass
def MULTIPLY(vm, c):
pass
def MULTIPLYU(vm, c):
pass
def DIVIDE(vm, c):
pass
def DIVIDEU(vm, c):
pass
def MUX(vm, c):
mem, registerfile, reg0, reg1, reg2, reg3, next_ip = \
get_args_for_4OP(vm, c)
registerfile[reg0] = (
( registerfile[reg2] & ~(registerfile[reg1]) ) |
( registerfile[reg3] & registerfile[reg1] )
)
return next_ip
def NMUX(vm, c):
pass
def SORT(vm, c):
pass
def SORTU(vm, c):
pass
# 3 OP integer instructions
def get_args_for_3OP(vm, c):
return (vm[MEM],
vm[REG],
c[I_REGISTERS][0], c[I_REGISTERS][1], c[I_REGISTERS][2],
c[NEXTIP])
def ADDU(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
mask = (1<<(registerfile.itemsize*8)) -1
assert(mask == (2**(registerfile.itemsize*8))-1 )
registerfile[reg0] = (registerfile[reg1] + registerfile[reg2]) & mask
return next_ip
# for ADD, vm_instructions.c worries about values being signed and
# stuff, but I think the idea of twos complement integers is that stuff
# gets sorted out when we do addition and we just have to mask out the
# overflow bits (which ADDU does anyway because we need to fit in the
# destination register)
# testing needed to validate
ADD = ADDU
def SUB(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
tmp1 = interpret_nbits_as_signed(registerfile[reg1], N_BITS)
tmp2 = interpret_nbits_as_signed(registerfile[reg2], N_BITS)
registerfile[reg0] = (tmp1-tmp2) & mask
return next_ip
def SUBU(vm, c):
pass
def CMP(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
tmp1 = interpret_nbits_as_signed(registerfile[reg1], N_BITS)
tmp2 = interpret_nbits_as_signed(registerfile[reg2], N_BITS)
set_comparison_flags(tmp1, tmp2, registerfile, reg0)
return next_ip
def CMPU(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
set_comparison_flags(
registerfile[reg1], registerfile[reg2], registerfile, reg0)
return next_ip
def MUL(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = 2**N_BITS-1
tmp1 = interpret_nbits_as_signed(registerfile[reg1], N_BITS)
tmp2 = interpret_nbits_as_signed(registerfile[reg2], N_BITS)
# after multiplying the values, do modular arithmatic,
# mod 2**32 (0x100000000) to get just the bottom 32 bits
# the idea being MULH is for accessing the higher bits
# but I wonder what this means when register size (N_BITS) is 16,
# shouldn't we split MUL and MULH on that boundary?
registerfile[reg0] = ( (tmp1*tmp2) % 0x100000000 ) & mask
return next_ip
def MULH(vm, c):
pass
def MULU(vm, c):
pass
def MULUH(vm, c):
pass
def DIV(vm, c):
pass
def MOD(vm, c):
pass
def DIVU(vm, c):
pass
def MODU(vm, c):
pass
def MAX(vm, c):
pass
def MAXU(vm, c):
pass
def MIN(vm, c):
pass
def MINU(vm, c):
pass
def AND(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
registerfile[reg0] = registerfile[reg1] & registerfile[reg2]
return next_ip
def OR(vm, c):
pass
def XOR(vm, c):
pass
def NAND(vm, c):
pass
def NOR(vm, c):
pass
def XNOR(vm, c):
pass
def MPQ(vm, c):
pass
def LPQ(vm, c):
pass
def CPQ(vm, c):
pass
def BPQ(vm, c):
pass
def SAL(vm, c):
pass
def SAR(vm, c):
pass
def SL0(vm, c):
mem, registerfile, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
mask = (1<<(registerfile.itemsize*8)) -1
registerfile[reg0] = (registerfile[reg1]<<registerfile[reg2]) & mask
return next_ip
def SR0(vm, c):
pass
def SL1(vm, c):
pass
def SR1(vm, c):
pass
def ROL(vm, c):
pass
def ROR(vm, c):
pass
def LOADX(vm, c):
mem, register_file, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
register_file[reg0] = \
readin_bytes(mem, register_file[reg1] + register_file[reg2],
COMPAT_TRUE, register_file.itemsize)
return next_ip
def LOADXU8(vm, c):
mem, register_file, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
register_file[reg0] = \
readin_bytes(mem, register_file[reg1] + register_file[reg2],
COMPAT_FALSE, 1)
return next_ip
def LOADX16(vm, c):
pass
def LOADXU16(vm, c):
mem, register_file, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
register_file[reg0] = \
readin_bytes(mem, register_file[reg1] + register_file[reg2],
COMPAT_FALSE, 2)
return next_ip
def LOADX32(vm, c):
pass
def LOADXU32(vm, c):
pass
def STOREX(vm, c):
mem, register_file, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
writeout_bytes(mem,
register_file[reg1]+register_file[reg2],
register_file[reg0],
register_file.itemsize)
return next_ip
def STOREX8(vm, c):
pass
def STOREX16(vm, c):
mem, register_file, reg0, reg1, reg2, next_ip = get_args_for_3OP(vm, c)
writeout_bytes(mem,
register_file[reg1]+register_file[reg2],
register_file[reg0],
2)
return next_ip
def STOREX32(vm, c):
pass
def CMPJUMP_G(vm, c):
pass
def CMPJUMP_GE(vm, c):
pass
def CMPJUMP_E(vm, c):
pass
def CMPJUMP_NE(vm, c):
pass
def CMPJUMP_LE(vm, c):
pass
def CMPJUMP_L(vm, c):
pass
def CMPJUMPU_G(vm, c):
pass
def CMPJUMPU_GE(vm, c):
pass
def CMPJUMPU_LE(vm, c):
pass
def CMPJUMPU_L(vm, c):
pass
# 2 OP integer instructions
def get_args_for_2OP(vm, c):
return vm[MEM], vm[REG], c[I_REGISTERS][0], c[I_REGISTERS][1], c[NEXTIP]
def NEG(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
N_BITS = register_file.itemsize*8
mask = (1<<N_BITS) -1 # (2**N_BITS)-1
register_file[reg0] = (
- # negate
interpret_nbits_as_signed(register_file[reg1], N_BITS) ) & mask
return next_ip
def ABS(vm, c):
pass
def NABS(vm, c):
pass
def SWAP(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
utmp1 = register_file[reg1]
register_file[reg1] = register_file[reg0]
register_file[reg0] = utmp1
return next_ip
def COPY(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
register_file[reg0] = register_file[reg1]
return next_ip
def MOVE(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
register_file[reg0] = register_file[reg1]
register_file[reg1] = 0
return next_ip
def NOT(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
mask = (1<<(register_file.itemsize*8)) -1
register_file[reg0] = (~register_file[reg1]) & mask
return next_ip
def BRANCH(vm, c):
pass
def CALL(vm, c):
pass
def PUSHR(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
reg_size = register_file.itemsize
writeout_bytes(mem, register_file[reg1], register_file[reg0], reg_size)
register_file[reg1] += reg_size
return next_ip
def PUSH8(vm, c):
pass
def PUSH16(vm, c):
pass
def PUSH32(vm, c):
pass
def POPR(vm, c):
mem, register_file, reg0, reg1, next_ip = get_args_for_2OP(vm, c)
reg_size = register_file.itemsize
register_file[reg1] -= reg_size
tmp = readin_bytes(mem, register_file[reg1], COMPAT_FALSE, reg_size)
writeout_bytes(mem, register_file[reg1], 0, reg_size)
register_file[reg0] = tmp
return next_ip
def POP8(vm, c):
pass
def POPU8(vm, c):
pass
def POP16(vm, c):
pass
def POPU16(vm, c):
pass
def POP32(vm, c):
pass
def POPU32(vm, c):
pass
def CMPSKIP_G(vm, c):
pass
def CMPSKIP_GE(vm, c):
pass
def CMPSKIP_E(vm, c):
pass
def CMPSKIP_NE(vm, c):
pass
def CMPSKIP_LE(vm, c):
pass
def CMPSKIP_L(vm, c):
pass
def CMPSKIPU_G(vm, c):
pass
def CMPSKIPU_GE(vm, c):
pass
def CMPSKIPU_LE(vm, c):
pass
def CMPSKIPU_L(vm, c):
pass
# 1 OP integer instructions
def get_args_for_1OP(vm, c):
return vm[MEM], vm[REG], c[I_REGISTERS][0], c[NEXTIP]
def READPC(vm, c):
pass
READSCID_TABLE = {
32: 5, # 256//8
16: 4, # 128//8
8: 3, # 64//8
4: 2, # 32//8
}
READSCID_DEFAULT = 1
def READSCID(vm, c):
mem, register_file, reg0, next_ip = get_args_for_1OP(vm, c)
register_file[reg0] = READSCID_TABLE.get(
register_file.itemsize, READSCID_DEFAULT)
return next_ip
def FALSE(vm, c):
mem, register_file, reg0, next_ip = get_args_for_1OP(vm, c)
register_file[reg0] = 0
return next_ip
def TRUE(vm, c):
# Don't sweat the inefficiency of calculating the maximum value for the
# register size, seperate implementations exist in
# knightinstructions64, knightinstructions32, knightinstructions16
mem, register_file, reg0, next_ip = get_args_for_1OP(vm, c)
register_file[reg0] = 2**(vm[REG].itemsize*BITS_PER_BYTE)-1
return next_ip
def JSR_COROUTINE(vm, c):
mem, register_file, reg0, next_ip = get_args_for_1OP(vm, c)
return register_file[reg0]
def RET(vm, c):
mem, register_file, reg0, next_ip_discard = get_args_for_1OP(vm, c)
reg_size = register_file.itemsize
# Update our index
address_of_pc_on_stack = register_file[reg0] - reg_size
register_file[reg0] = address_of_pc_on_stack
# Read in the new PC
next_ip = readin_bytes(mem, address_of_pc_on_stack, COMPAT_FALSE, reg_size)
# Clear Stack Values
writeout_bytes(mem, address_of_pc_on_stack, 0, reg_size)
return next_ip
def PUSHPC(vm, c):
pass
def POPPC(vm, c):
pass
# 2 OP integer immediate
def get_args_for_2OPI(vm, c, signed_immediate=COMPAT_TRUE):
raw_immediate = c[RAW_IMMEDIATE]
return (
vm[MEM], vm[REG],
c[I_REGISTERS][0], c[I_REGISTERS][1],
( raw_immediate if not signed_immediate
else interpret_sixteenbits_as_signed(raw_immediate) ),
c[NEXTIP],
)
def ADDI(vm, c):
pass
def ADDUI(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
mask = (1<<(register_file.itemsize*8))-1
register_file[reg0] = (register_file[reg1] + signed_immediate) & mask
return next_ip
def SUBI(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = register_file.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
register_file[reg0] = (
interpret_nbits_as_signed(register_file[reg1], N_BITS) -
signed_immediate ) & mask
return next_ip
def SUBUI(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
# subtract and use a bitmask for register_file.itemsize*8 bits
# to match the register size. A negative result from the subtraction
# is no problem as negative numbers of type long (2.x) or int (3.x)
# have infinite 1 bits available for bitwise operations
# https://wiki.python.org/moin/BitwiseOperators
# in python 2.2-2.7 the graduation from int (precision of c long type) to
# infinite precision long happens automatically as the mask
# operand that will force up promotion when register_file.itemsize matches
# the c long
mask = (1<<(register_file.itemsize*8))-1
assert(mask == ( (2**(register_file.itemsize*8)) -1 ))
register_file[reg0] = (register_file[reg1] - signed_immediate) & mask
return next_ip
def CMPI(vm, c):
pass
def LOAD(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
register_file[reg0] = \
readin_bytes(mem, register_file[reg1] + signed_immediate,
COMPAT_FALSE, register_file.itemsize)
return next_ip
def LOAD8(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
mask = (2**(register_file.itemsize*BITS_PER_BYTE))-1
register_file[reg0] = interpret_nbits_as_signed(
mem[ (register_file[reg1]+signed_immediate) & mask ],
BITS_PER_BYTE) & mask
return next_ip
def LOADU8(vm, c):
mem, register_file, reg0, reg1, unsigned_immediate, next_ip = \
get_args_for_2OPI(vm, c, signed_immediate=COMPAT_FALSE)
mask = 2**(register_file.itemsize * 8)-1
register_file[reg0] = \
mem[ (register_file[reg1]+unsigned_immediate) & mask ] & mask
return next_ip
def LOAD16(vm, c):
pass
def LOADU16(vm, c):
pass
def LOAD32(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
mask = 2**(register_file.itemsize * 8)-1
# all that we need when doing a LOAD32 to sign extend to a 64bit
# register bitwise and against a bitmask with 64 bits
# this has no negative effect on 32 bit registers
# and cuts things off on 16 bit registers
register_file[reg0]= readin_bytes(
mem,
(register_file[reg1] + signed_immediate ) & mask, # memory address
COMPAT_TRUE, 4) & mask
return next_ip
def LOADU32(vm, c):
pass
def CMPUI(vm, c):
mem, register_file, reg0, reg1, unsigned_immediate, next_ip = \
get_args_for_2OPI(vm, c, signed_immediate=COMPAT_FALSE)
set_comparison_flags(
register_file[reg1], unsigned_immediate, register_file, reg0)
return next_ip
def STORE(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
writeout_bytes(mem,
register_file[reg1]+signed_immediate,
register_file[reg0],
register_file.itemsize)
return next_ip
def STORE8(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
writeout_bytes(mem, register_file[reg1] + signed_immediate,
register_file[reg0], 1);
return next_ip
def STORE16(vm, c):
pass
def STORE32(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
writeout_bytes(mem, register_file[reg1] + signed_immediate,
register_file[reg0], 4)
return next_ip
def ANDI(vm, c):
mem, register_file, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
register_file[reg0] = register_file[reg1] & signed_immediate
return next_ip
def ORI(vm, c):
pass
def XORI(vm, c):
pass
def NANDI(vm, c):
pass
def NORI(vm, c):
pass
def XNORI(vm, c):
pass
def CMPJUMPI_G(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if (interpret_nbits_as_signed(registerfile[reg0], N_BITS) >
interpret_nbits_as_signed(registerfile[reg1], N_BITS) ):
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPI_GE(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if (interpret_nbits_as_signed(registerfile[reg0], N_BITS) >=
interpret_nbits_as_signed(registerfile[reg1], N_BITS) ):
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPI_E(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if registerfile[reg0] == registerfile[reg1]:
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPI_NE(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if registerfile[reg0] != registerfile[reg1]:
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPI_LE(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if (interpret_nbits_as_signed(registerfile[reg0], N_BITS) <=
interpret_nbits_as_signed(registerfile[reg1], N_BITS) ):
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPI_L(vm, c):
mem, registerfile, reg0, reg1, signed_immediate, next_ip = \
get_args_for_2OPI(vm, c)
N_BITS = registerfile.itemsize*BITS_PER_BYTE
mask = (1<<N_BITS)-1
if (interpret_nbits_as_signed(registerfile[reg0], N_BITS) <
interpret_nbits_as_signed(registerfile[reg1], N_BITS) ):
return (next_ip + signed_immediate) & mask
else:
return next_ip
def CMPJUMPUI_G(vm, c):
pass
def CMPJUMPUI_GE(vm, c):
pass
def CMPJUMPUI_LE(vm, c):
pass
def CMPJUMPUI_L(vm, c):
pass
# 1 OP integer immediate
def get_args_for_1OPI(vm, c, signed_immediate=COMPAT_TRUE):
raw_immediate = c[RAW_IMMEDIATE]
return (
vm[MEM], vm[REG], c[I_REGISTERS][0],
(raw_immediate if not signed_immediate
else interpret_sixteenbits_as_signed(raw_immediate) ),
c[NEXTIP]
)
def make_condition_bit_jump(condition_mask):
def JUMP_condition(vm, c):
mem, register_file, reg0, signed_immediate, next_ip = \
get_args_for_1OPI(vm, c)
if register_file[reg0] & condition_mask:
return next_ip + signed_immediate
else:
return next_ip
return JUMP_condition
JUMP_C = make_condition_bit_jump(CONDITION_BIT_C)
JUMP_B = make_condition_bit_jump(CONDITION_BIT_B)
JUMP_O = make_condition_bit_jump(CONDITION_BIT_O)
JUMP_G = make_condition_bit_jump(CONDITION_BIT_GT)
JUMP_E = make_condition_bit_jump(CONDITION_BIT_EQ)
JUMP_L = make_condition_bit_jump(CONDITION_BIT_LT)
def make_two_either_condition_bit_jump(condition_mask1, condition_mask2):
combined_mask = condition_mask1 | condition_mask2
def JUMP_two_condition(vm, c):
mem, register_file, reg0, signed_immediate, next_ip = \
get_args_for_1OPI(vm, c)
# how vm_instructions.c (stage0) does this
# if (register_file[reg0] & condition_mask1 or
# register_file[reg0] & condition_mask2):
# return next_ip + signed_immediate
# else:
# return next_ip
# I haven't tested it, but I assume this is faster?
if register_file[reg0] & combined_mask:
return next_ip + signed_immediate
else:
return next_ip
return JUMP_two_condition
JUMP_GE = make_two_either_condition_bit_jump(CONDITION_BIT_GT, CONDITION_BIT_EQ)
JUMP_LE = make_two_either_condition_bit_jump(CONDITION_BIT_LT, CONDITION_BIT_EQ)
def JUMP_NE(vm, c):
mem, register_file, reg0, signed_immediate, next_ip = \
get_args_for_1OPI(vm, c)
if register_file[reg0] & CONDITION_BIT_EQ:
return next_ip
else: # CONDITION_BIT_EQ not set
return next_ip + signed_immediate
def JUMP_Z(vm, c):
mem, register_file, reg0, signed_immediate, next_ip = \
get_args_for_1OPI(vm, c)
if 0==register_file[reg0]:
return next_ip + signed_immediate
else:
return next_ip
def JUMP_NZ(vm, c):