-
Notifications
You must be signed in to change notification settings - Fork 0
/
mlp.py
131 lines (111 loc) · 5.03 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
""" This file is for performing the MLP
"""
from sklearn import linear_model
from sklearn import cross_validation
import numpy as np
import os
import sys
from sklearn.metrics import r2_score
from sklearn.preprocessing import scale
#SUB_FEATURES = ['EdgeWeight.txt', 'JPageRank.txt', 'PropFlow.txt', 'IVolume.txt', 'RootedPageRank.txt']
FEATURES = ['EdgeWeight.txt', 'CommonNeighbor.txt', 'IDegree.txt', 'IPageRank.txt', 'IVolume.txt', 'JaccardCoefficient.txt', 'JDegree.txt', 'JPageRank.txt', 'JVolume.txt', 'PropFlow.txt', 'RootedPageRank.txt'] # lines: (from to target f1 f2)
# All features are expected to be lines of the format (from, to, feature_value)
# target_vals is lines of the format (from, to, target_value)
# These features are all calculated for a given delta_x and delta_y
NLP_AND_MC_FEATURES = 16
NLP_FEATURES = ['SentSum', 'LinesSum', 'MC1Sum', 'MC2Sum', 'MC3Sum', 'MC4Sum', 'MC5Sum', 'MC6Sum', 'SentMean', 'LinesMean', 'MC1Mean', 'MC2Mean', 'MC3Mean', 'MC4Mean', 'MC5Mean', 'MC6Mean']
FEATURE_NAMES = FEATURES + NLP_FEATURES
def load_files(window, features):
NUM_EXAMPLES = sum(1 for line in open('./%s/EdgeWeight.txt' % (window)))
targets = np.zeros(NUM_EXAMPLES)
print 'We have:', NUM_EXAMPLES, 'examples'
print 'We have:', len(features) + NLP_AND_MC_FEATURES, 'features'
X = np.zeros((NUM_EXAMPLES, len(features) + NLP_AND_MC_FEATURES))
lookupMap = {}
col = 0
window_feature_filenames = ['%s/%s' % (window, ff) for ff in features]
for feature_filename in features:
with open(window + '/' + feature_filename, 'r') as f:
row = 0
for line in f:
split_line = line.split(' ')
lookupMap[(split_line[0], split_line[1])] = row
X[row][col] = float(split_line[2].strip()) # must have only one feature
row += 1
col += 1
# Process EdgeAttrs.txt
with open (window + '/' + 'EdgeAttrs.txt', 'r') as f:
row = 0
for line in f:
split_line = line.split(' ')
lookupMap[(split_line[0], split_line[1])] = row
# Remaining are:
# SentimentSum LinesSum MC1SUM ... MCNSUM SentimentMean LinesMean MC1MEAN ... MCNMEAN
for i in xrange(NLP_AND_MC_FEATURES):
X[row][-i] = float(split_line[-i].strip())
row += 1
with open(window + '/Labels.txt', 'r') as f:
for line in f:
split_line = line.split(' ')
if (split_line[0], split_line[1]) in lookupMap:
targets[lookupMap[(split_line[0], split_line[1])]] = float(split_line[2].strip())
return X, targets
def process_window_dir(window_dir, model, features):
print 'Processing', window_dir
alphas = [0.025]
only_feature_selection = False
X, y = load_files(window_dir, features)
X = scale(X)
from sklearn.feature_selection import SelectKBest, f_regression
featureSelector = SelectKBest(score_func=f_regression,k=20)
featureSelector.fit(X,y)
print 'Selected features', [FEATURE_NAMES[i] for i in list(featureSelector.get_support(indices=True))]
if only_feature_selection:
baseline_mean(X,y)
baseline_zero(X,y)
F, pval = f_regression(X, y)
for i,f in enumerate(F):
if i < len(FEATURES):
name = FEATURES[i]
else:
name = NLP_FEATURES[i-11]
print 'F-Statistic for %s is %f with p-value %f' % (name, f, pval[i])
return None
else:
scores = []
print 'sum of y is %d' % sum(y)
clf = model()
clf.fit(X[:30], y[:30])
print 'small score is %g' % clf.score(X[30:60], y[30:60])
# K-fold cross_validation
kf = cross_validation.KFold(X.shape[0], n_folds=10, shuffle=True)
for train_index, test_index in kf:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
for alpha in alphas:
clf = model()
clf.set_params(alpha=alpha)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
scores.append(score)
print '{} score is {} when alpha is {}'.format(model.__name__, score, alpha)
return scores
def baseline_mean(test_x, test_y):
mean = 0.0
for x in test_x:
mean += x[0]
mean /= len(test_x)
print 'Mean baseline r^2 score of', r2_score(test_y, [mean] * len(test_x))
def baseline_zero(test_x, test_y):
print 'Zero baseline r^2 score of', r2_score(test_y, [0.0] * len(test_x))
if __name__ == '__main__':
windows = [name for name in os.listdir(sys.argv[1])]
print 'Windows in', sys.argv[1], 'are', windows
for f in windows:
scores = process_window_dir(sys.argv[1] + '/' + f, linear_model.Ridge, FEATURES)
if scores != None and None not in scores:
res = np.mean(scores)
var = np.var(scores)
print 'res is %f with var %f' % (res, var)
else:
print 'No stats as this was only for feature engineering.'