-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrenderer.py
313 lines (250 loc) · 10.3 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from pathlib import Path
import matplotlib.axes
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import tilemapbase
from PIL import Image, ImageEnhance, ImageChops
from matplotlib.axes import Subplot
from matplotlib.figure import Figure
from tilemapbase import Extent
from coverage_providers import CoverageProvider
from network_type import NetworkType
tilemapbase.start_logging()
tilemapbase.init(create=True)
def render(measurement_id: str,
network_type: NetworkType or None,
padding_degrees: float,
dpi: int,
location_data: pd.DataFrame or None,
signal_data: pd.DataFrame or None,
display_info_data: pd.DataFrame or None,
coverage_provider: CoverageProvider or None,
aspect_ratio: float,
file_type: str,
title: str or None,
vmin: int or None,
vmax: int or None,
plot_rsrq: bool,
show_title: bool = True):
if location_data is not None:
bounding_box_data = location_data
elif signal_data is not None:
bounding_box_data = signal_data
elif display_info_data is not None:
bounding_box_data = display_info_data
else:
raise ValueError("At least one location data set is required.")
bounding_box = _get_bounding_box(bounding_box_data[["latitude", "longitude"]], padding_degrees)
extent = _create_extent(bounding_box, aspect_ratio)
tile_provider = tilemapbase.tiles.Carto_Light
fig, ax = plt.subplots(figsize=(10 * (dpi / 90), 4 * (dpi / 90)), dpi=dpi, facecolor="White")
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
plotter = tilemapbase.Plotter(extent, tile_provider, width=3 * dpi)
plotter.plot(ax, tile_provider)
if location_data is not None:
_plot_location_updates(ax, location_data)
if signal_data is not None:
_scatter_signal_strength(network_type=network_type, signal_data=signal_data, fig=fig, ax=ax,
vmin=vmin, vmax=vmax, plot_rsrq=plot_rsrq)
if display_info_data is not None:
_plot_display_info(ax=ax, location_data=location_data, display_info_data=display_info_data)
if coverage_provider is not None:
_render_operator_map(coverage_provider=coverage_provider, network_type=network_type, ax=ax,
bounding_box=bounding_box, aspect_ratio=aspect_ratio, extent=extent)
if show_title:
plt.title(_get_title(title, network_type, coverage_provider, signal_data, plot_rsrq))
path = _create_filename(measurement_id=measurement_id, coverage_provider=coverage_provider,
network_type=network_type, dpi=dpi, file_type=file_type, plot_rsrq=plot_rsrq,
name="override" if display_info_data is not None else "coverage")
path.parent.mkdir(parents=True, exist_ok=True)
plt.savefig(
path,
format=file_type,
dpi=dpi,
bbox_inches="tight",
transparent=True,
)
def _get_title(title: str or None, network_type: NetworkType or None, coverage_provider: CoverageProvider or None,
signal_data: pd.DataFrame or None, plot_rsrq: bool) -> str:
if title is not None:
return title
s = ""
if network_type is not None:
s += f"{network_type.name} "
if signal_data is None:
s += "Dead Spots "
elif plot_rsrq:
s += "Signal Quality "
else:
s += "Signal Strength "
if coverage_provider is not None:
s += f"({coverage_provider.operator_name()})"
return s.strip()
def _plot_location_updates(ax: Subplot, location_data: pd.DataFrame):
projected_loc = _project_coordinates(location_data)
ax.plot(
projected_loc["longitude"],
projected_loc["latitude"],
color="darkgray",
linewidth=1,
zorder=1
)
def _create_extent(bounding_box, aspect_ratio: float):
extent = tilemapbase.Extent.from_lonlat(
bounding_box["min"]["longitude"],
bounding_box["max"]["longitude"],
bounding_box["min"]["latitude"],
bounding_box["max"]["latitude"],
)
extent = extent.to_aspect(aspect_ratio)
return extent
def _project_coordinates(df) -> dict[str, list]:
projected = dict(latitude=[], longitude=[])
for i, row in df.iterrows():
[long, lat] = tilemapbase.project(row["longitude"], row["latitude"])
projected["longitude"].append(long)
projected["latitude"].append(lat)
return projected
def _scatter_signal_strength(network_type: NetworkType, signal_data: pd.DataFrame, fig: Figure, ax: Subplot,
vmin: int or None, vmax: int or None, plot_rsrq: bool):
df = signal_data.loc[signal_data["networkType"] == network_type]
projected = _project_coordinates(df)
if plot_rsrq and network_type == NetworkType.LTE:
c = df["rsrq"]
elif plot_rsrq and network_type == NetworkType.NR:
c = df["ssRsrq"]
else:
c = df["dbm"]
scatter = ax.scatter(
x=projected["longitude"],
y=projected["latitude"],
linewidth=5,
marker=".",
c=c,
cmap="rainbow_r",
vmin=_get_vmin(signal_data, network_type, vmin, plot_rsrq),
vmax=_get_vmax(signal_data, network_type, vmax, plot_rsrq),
zorder=3,
)
color_bar = fig.colorbar(scatter)
color_bar.ax.set_ylabel(_get_axis_name(network_type, plot_rsrq))
def _get_vmin(signal_data: pd.DataFrame, network_type: NetworkType, vmin: int or None, plot_rsrq: bool):
if vmin is not None:
return vmin
if plot_rsrq and network_type == NetworkType.LTE:
return signal_data["rsrq"].min()
if plot_rsrq and network_type == NetworkType.NR:
return signal_data["ssRsrq"].min()
return signal_data["dbm"].min()
def _get_vmax(signal_data: pd.DataFrame, network_type: NetworkType, vmax: int or None, plot_rsrq: bool):
if vmax is not None:
return vmax
if plot_rsrq and network_type == NetworkType.LTE:
return signal_data["rsrq"].max()
if plot_rsrq and network_type == NetworkType.NR:
return signal_data["ssRsrq"].max()
return signal_data["dbm"].max()
def _get_axis_name(network_type: NetworkType, plot_rsrq: bool):
if network_type == NetworkType.GSM:
return "RSSI in dBm"
if plot_rsrq and (network_type == NetworkType.LTE or network_type == NetworkType.NR):
return "RSRQ in dB"
if network_type == NetworkType.LTE or network_type == NetworkType.NR:
return "RSRP in dBm"
return "???"
def _plot_display_info(ax: Subplot, location_data: pd.DataFrame, display_info_data: pd.DataFrame):
projected = _project_coordinates(display_info_data)
ax.scatter(
x=projected["longitude"],
y=projected["latitude"],
color="gray",
s=8,
)
for i, display_info in display_info_data.iterrows():
df = location_data.loc[(location_data["time"] >= display_info["time"])]
projected = _project_coordinates(df)
name = display_info["overrideNetworkType"]
if name == "NONE":
name = display_info["networkType"]
ax.plot(
projected["longitude"],
projected["latitude"],
linewidth=3,
color=_map_override_network_type(display_info["overrideNetworkType"], display_info["networkType"]),
zorder=i + 1,
label=name,
)
_legend_without_duplicate_labels(ax)
def _legend_without_duplicate_labels(ax):
handles, labels = ax.get_legend_handles_labels()
unique = [(h, l) for i, (h, l) in enumerate(zip(handles, labels)) if l not in labels[:i]]
unique = sorted(unique, key=lambda x: x[1])
ax.legend(*zip(*unique))
def _map_override_network_type(override: str, connected: str) -> str:
if override == "NR_NSA_MMWAVE":
return "darkblue"
elif override == "NR_NSA":
return "royalblue"
elif override == "LTE_ADVANCED_PRO":
return "darkorange"
elif override == "LTE_CA":
return "gold"
elif override == "NONE" and connected == "LTE":
return "springgreen"
elif override == "EDGE":
return "firebrick"
else:
return "orange"
def _render_operator_map(coverage_provider: CoverageProvider, network_type: NetworkType,
ax: matplotlib.axes.Subplot, bounding_box: dict[str, dict[str, float]],
aspect_ratio: float, extent: Extent):
coverage_img_path = coverage_provider.fetch_img(
network_type=network_type,
bounding_box=bounding_box,
size={
"height": 2000,
"width": 2000 * aspect_ratio,
},
)
img = Image.open(coverage_img_path).convert("LA")
img = ImageChops.invert(img)
img = ImageEnhance.Contrast(img).enhance(100)
img = img.convert('RGBA')
data = np.array(img)
red, green, blue, alpha = data.T
black_areas = (red == 0) & (blue == 0) & (green == 0)
data[..., :-1][black_areas.T] = (248, 113, 113)
img = Image.fromarray(data)
ax.imshow(img, extent=[extent.xmin, extent.xmax, extent.ymax, extent.ymin], cmap=cm.Greys, alpha=0.6)
def _get_bounding_box(lat_long_df: pd.DataFrame, padding_degrees: float) -> dict[str, dict[str, float]]:
"""
Get the map bounding box by searching for minimum and maximum latitude and longitude
and adding a padding around them.
:param lat_long_df: DataFrame with latitude and longitude measurements.
:param padding_degrees: Amount of padding in degrees.
:return:
"""
return {
"min": {
"latitude": lat_long_df["latitude"].min() - padding_degrees,
"longitude": lat_long_df["longitude"].min() - padding_degrees,
},
"max": {
"latitude": lat_long_df["latitude"].max() + padding_degrees,
"longitude": lat_long_df["longitude"].max() + padding_degrees,
}
}
def _create_filename(measurement_id: str, name: str, dpi: int, file_type: str, plot_rsrq: bool,
coverage_provider: CoverageProvider or None, network_type: NetworkType or None) -> Path:
s = f"out/graphs/{measurement_id}/{name}-"
if coverage_provider is not None:
s += f"{coverage_provider.operator_name()}-"
if network_type is not None:
s += f"{network_type}-"
if plot_rsrq:
s += f"rsrq-"
s += f"{dpi}.{file_type}"
return Path(s)