-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathRationals.lagda
executable file
·171 lines (131 loc) · 5.83 KB
/
Rationals.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
Andrew Sneap, 10 March 2022
In this file, I prove that the Rationals are metric space, with
respect to the usual metric.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan renaming (_+_ to _∔_)
open import Notation.Order
open import UF.FunExt
open import UF.Subsingletons
open import UF.PropTrunc
open import Rationals.Type
open import Rationals.Abs
open import Rationals.Addition
open import Rationals.Negation
open import Rationals.Order
open import Rationals.Positive renaming (_+_ to _ℚ₊+_)
module MetricSpaces.Rationals
(fe : Fun-Ext)
(pe : Prop-Ext)
(pt : propositional-truncations-exist)
where
open import MetricSpaces.Type fe pe pt
ℚ-zero-dist : (q : ℚ) → abs (q - q) = 0ℚ
ℚ-zero-dist q = abs (q - q) =⟨ ap abs (ℚ-inverse-sum-to-zero q) ⟩
abs 0ℚ =⟨ by-definition ⟩
0ℚ ∎
ℚ<-abs : (x y : ℚ) → x < y → y - x = abs (x - y)
ℚ<-abs x y l = γ
where
I : 0ℚ < y - x
I = ℚ<-difference-positive x y l
γ : y - x = abs (x - y)
γ = y - x =⟨ abs-of-pos-is-pos' (y - x) I ⁻¹ ⟩
abs (y - x) =⟨ abs-comm y x ⟩
abs (x - y) ∎
inequality-chain-to-metric : (p q r : ℚ)
→ p ≤ q
→ q ≤ r
→ abs (p - r) = abs (p - q) + abs (q - r)
inequality-chain-to-metric p q r l₁ l₂ = γ
where
γ₁ : abs (p - q) = q - p
γ₁ = ℚ≤-to-abs' p q l₁
γ₂ : abs (q - r) = r - q
γ₂ = ℚ≤-to-abs' q r l₂
I : p ≤ r
I = ℚ≤-trans p q r l₁ l₂
γ₃ : abs (p - r) = r - p
γ₃ = ℚ≤-to-abs' p r I
γ : abs (p - r) = abs (p - q) + abs (q - r)
γ = abs (p - r) =⟨ γ₃ ⟩
r - p =⟨ ap (_- p) (ℚ-inverse-intro'''' r q) ⟩
r - q + q - p =⟨ ℚ+-assoc (r - q) q (- p) ⟩
r - q + (q - p) =⟨ ℚ+-comm (r - q) (q - p) ⟩
q - p + (r - q) =⟨ ap (_+ (r - q)) (γ₁ ⁻¹) ⟩
abs (p - q) + (r - q) =⟨ ap (abs (p - q) +_) (γ₂ ⁻¹) ⟩
abs (p - q) + abs (q - r) ∎
inequality-chain-with-metric : (x y w z ε₁ ε₂ : ℚ)
→ w ≤ y
→ y ≤ z
→ abs (x - y) < ε₁
→ abs (w - z) < ε₂
→ abs (x - z) < (ε₁ + ε₂)
inequality-chain-with-metric x y w z ε₁ ε₂ l₁ l₂ l₃ l₄ = γ
where
I : abs (x - z) ≤ abs (x - y) + abs (y - z)
I = ℚ-triangle-inequality' x y z
II : abs (w - z) = abs (y - z) + abs (w - y)
II = abs (w - z) =⟨ inequality-chain-to-metric w y z l₁ l₂ ⟩
abs (w - y) + abs (y - z) =⟨ ℚ+-comm (abs (w - y)) (abs (y - z)) ⟩
abs (y - z) + abs (w - y) ∎
III : 0ℚ ≤ abs (w - y)
III = ℚ-abs-is-positive (w - y)
IV : abs (y - z) ≤ abs (y - z) + abs (w - y)
IV = ℚ≤-addition-preserves-order'' (abs (y - z)) (abs (w - y) ) III
V : abs (y - z) ≤ abs (w - z)
V = transport (abs (y - z) ≤_) (II ⁻¹) IV
VI : abs (y - z) < ε₂
VI = ℚ≤-<-trans (abs (y - z)) (abs (w - z)) ε₂ V l₄
VII : abs (x - y) + abs (y - z) < ε₁ + ε₂
VII = ℚ<-adding (abs (x - y)) ε₁ (abs (y - z)) ε₂ l₃ VI
γ : abs (x - z) < ε₁ + ε₂
γ = ℚ≤-<-trans (abs (x - z)) (abs (x - y) + abs (y - z)) (ε₁ + ε₂) I VII
B-ℚ : (x y : ℚ) (ε : ℚ₊) → 𝓤₀ ̇
B-ℚ x y (ε , 0<ε) = abs (x - y) < ε
ℚ-m1a : m1a ℚ B-ℚ
ℚ-m1a x y f = cases γ₁ γ₂ I
where
α : ℚ
α = abs (x - y)
0≤α : 0ℚ ≤ α
0≤α = ℚ-abs-is-positive (x - y)
I : (0ℚ < α) ∔ (0ℚ = abs (x - y))
I = ℚ≤-split 0ℚ α 0≤α
γ₁ : 0ℚ < α → x = y
γ₁ l = 𝟘-elim (ℚ<-irrefl α (f (α , l )))
γ₂ : 0ℚ = abs (x - y) → x = y
γ₂ e = x =⟨ ℚ-inverse-intro'''' x y ⟩
x - y + y =⟨ ap (_+ y) (ℚ-abs-zero-is-zero (x - y) (e ⁻¹)) ⟩
0ℚ + y =⟨ ℚ-zero-left-neutral y ⟩
y ∎
ℚ-m1b : m1b ℚ B-ℚ
ℚ-m1b x (ε , 0<ε) = transport (_< ε) (ℚ-zero-dist x ⁻¹) 0<ε
ℚ-m2 : m2 ℚ B-ℚ
ℚ-m2 x y (ε , 0<ε) = transport (_< ε) (abs-comm x y)
ℚ-m3 : m3 ℚ B-ℚ
ℚ-m3 x y (ε₁ , 0<ε₁) (ε₂ , 0<ε₂) l B = ℚ<-trans (abs (x - y)) ε₁ ε₂ B l
ℚ-m4 : m4 ℚ B-ℚ
ℚ-m4 x y z (ε₁ , 0<ε₁) (ε₂ , 0<ε₂) B₁ B₂ = cases γ₁ γ₂ II
where
I : abs ((x - y) + (y - z)) ≤ abs (x - y) + abs (y - z)
I = ℚ-triangle-inequality (x - y) (y - z)
II : (abs ((x - y) + (y - z)) < abs (x - y) + abs (y - z))
∔ (abs ((x - y) + (y - z)) = abs (x - y) + abs (y - z))
II = ℚ≤-split (abs ((x - y) + (y - z))) (abs (x - y) + abs (y - z)) I
III : abs (x - y) + abs (y - z) < ε₁ + ε₂
III = ℚ<-adding (abs (x - y)) ε₁ (abs (y - z)) ε₂ B₁ B₂
IV : abs (x - y + (y - z)) = abs (x - z)
IV = ap abs (ℚ-add-zero x (- z) y ⁻¹)
γ₁ : abs ((x - y) + (y - z)) < abs (x - y) + abs (y - z)
→ B-ℚ x z ((ε₁ , 0<ε₁) ℚ₊+ (ε₂ , 0<ε₂))
γ₁ l = ℚ<-trans (abs (x - z)) (abs (x - y) + abs (y - z)) (ε₁ + ε₂) V III
where
V : abs (x - z) < abs (x - y) + abs (y - z)
V = transport (_< abs (x - y) + abs (y - z)) IV l
γ₂ : abs ((x - y) + (y - z)) = abs (x - y) + abs (y - z)
→ B-ℚ x z ((ε₁ , 0<ε₁) ℚ₊+ (ε₂ , 0<ε₂))
γ₂ e = transport (_< ε₁ + ε₂) (e ⁻¹ ∙ IV) III
ℚ-metric-space : metric-space ℚ
ℚ-metric-space = B-ℚ , ℚ-m1a , ℚ-m1b , ℚ-m2 , ℚ-m3 , ℚ-m4
\end{code}