-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
162 lines (143 loc) · 5.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from py_trees.composites import Sequence
from stable_baselines3 import PPO
from baselines_node_experiment import BaselinesNodeExperiment
from bt import conditions
from bt.actions import Attack, Target, KeepDistance
from evaluation.evaluation_manager import EvaluationManager
from learning.baseline_node import ChaseEntity, DefeatSkeleton
from mission.observation_manager import ObservationManager, RewardDefinition, ObservationDefinition
from utils.file import store_spec, load_spec, get_absolute_path
cow_skeleton_experiment = {
"goals": [conditions.IsCloseToEntity],
"mission": "resources/arena_cow_skeleton_v2.xml",
"model_log_dir": "results/cow_skeleton_experiment",
"model_class": PPO,
"acc_ends_episode": True,
"model_arguments": {
"policy": 'MultiInputPolicy',
"verbose": 1,
"tensorboard_log": get_absolute_path("tensorboard"),
},
"active_entities": False,
"baseline_node_type": ChaseEntity,
"observation_manager": ObservationManager(
reward_definition=RewardDefinition(
POST_CONDITION_FULFILLED_REWARD=1000,
AGENT_DEAD_REWARD=-1000,
ACC_VIOLATED_REWARD=-10,
),
observation_definition=ObservationDefinition(
GRID_SIZE_AXIS=[1, 11, 11],
FIRE_AVOID_DISTANCE=1.5
)
),
"observation_filter": [
"entity_relative_distance",
"entity_relative_direction",
"enemy_relative_distance",
"enemy_relative_direction",
"health",
"entity_visible",
"surroundings"
],
"max_steps_per_episode": 2500,
"total_timesteps": 2000000,
"random_position_range": {'x': [-14, -12], 'y': [6], 'z': [-12, 12]},
"random_entities_position_range": {
"cow": {'x': [14], 'y': [4], 'z': [-12, 12]},
"skeleton": {'x': [0], 'y': [4], 'z': [-12, 12]}
},
'mission_max_time': 30
}
skeleton_fire_experiment_v2 = {
"goals": [conditions.IsSafeFromFire, conditions.IsEnemyDefeated],
"mission": "resources/arena_skeleton_v2.xml",
"model_log_dir": "results/basicfighter_ppo7",
"active_entities": True,
"acc_ends_episode": False,
"observation_manager": ObservationManager(
reward_definition=RewardDefinition(
POST_CONDITION_FULFILLED_REWARD=1000,
AGENT_DEAD_REWARD=-1000,
ACC_VIOLATED_REWARD=-10
),
observation_definition=ObservationDefinition(
GRID_SIZE_AXIS=[1, 11, 11],
FIRE_AVOID_DISTANCE=1.5
)
),
"observation_filter": [
"enemy_relative_distance",
"enemy_relative_direction",
"health",
"enemy_health",
"enemy_targeted",
"surroundings"
],
"model_class": PPO,
"model_arguments": {
"policy": 'MultiInputPolicy',
"verbose": 1,
"tensorboard_log": get_absolute_path("tensorboard"),
},
"total_timesteps": 3000000,
"logging": 1
}
skeleton_fire_experiment_manual = {
"mission": "resources/arena_skeleton_v2.xml",
"observation_manager": ObservationManager(),
"logging": 1
}
cow_fire_experiment = {
"goals": [conditions.IsSafeFromFire, conditions.IsNotHungry],
"mission": "resources/arena_cow_v2.xml",
"model_log_dir": "",
"active_entities": True,
"observation_manager": ObservationManager(),
"observation_filter": [
"entity_relative_position",
"enemy_relative_position",
"direction",
"health",
"entity_visible",
"surroundings",
"is_entity_pickable",
"has_food",
"satiation"
]
}
def experiment_evaluate(log_dir, model_spec, evaluation_manager):
spec = load_spec(log_dir)
spec["evaluation_manager"] = evaluation_manager
evaluation_manager.name = spec["model_log_dir"]
experiment = BaselinesNodeExperiment(**spec)
experiment.evaluate(model_spec)
return evaluation_manager
def experiment_test(spec):
experiment = BaselinesNodeExperiment(**spec)
agent = experiment.agent
agent.tree = Sequence("TestSequence", memory=False,
children=[Target(agent),
KeepDistance(agent),
Attack(agent)]
)
experiment.mission.run()
def experiment_train(spec):
experiment = BaselinesNodeExperiment(**spec)
store_spec(spec)
experiment.train_node(spec['model_class'], spec['model_arguments'])
# Can be used to verify gym env and generate mission spec when spec definition has changed.
def experiment_check_env(spec):
experiment = BaselinesNodeExperiment(**spec)
store_spec(spec)
experiment.check_env()
if __name__ == '__main__':
experiment_evaluate(log_dir="results/basicfighter_ppo7", model_spec={
DefeatSkeleton: ("results/basicfighter_ppo7", "final.mdl"),
}, evaluation_manager=EvaluationManager(runs=10))
# experiment_train(cow_skeleton_experiment)
# evaluate_all_models_once("results/cow_skeleton_experiment", "log/eval", "cow_skeleton_experiment")
# evaluate_different_positions("results/cow_skeleton_experiment", "log/eval", "cow_skeleton_experiment", "best_model_41.zip")
# plot_positions("log/eval", "cow_skeleton_experiment")
# store_spec(cow_skeleton_experiment)
# experiment_check_env(skeleton_fire_experiment_v2)