-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
99 lines (86 loc) · 4.26 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
from typing import Tuple, Optional, Union
from pathlib import Path
import torchaudio
from torch.utils.data import Dataset
from torch import Tensor
EXCEPT_FOLDER = "_background_noise_"
FOLDER_IN_ARCHIVE = "hal_keywords"
def _load_list(root, *filenames):
output = []
for filename in filenames:
filepath = os.path.join(root, filename)
with open(filepath) as fileobj:
output += [os.path.normpath(os.path.join(root, line.strip())) for line in fileobj]
return output
def low_hal_kw_item(filepath: str, path: str) -> Tuple[Tensor, int, str, str, int]:
relpath = os.path.relpath(filepath, path)
label, filename = os.path.split(relpath)
stub, ext = filename.split(".")
# Besides the officially supported split method for datasets defined by "validation_list.txt"
# and "testing_list.txt" over "speech_commands_v0.0x.tar.gz" archives, an alternative split
# method referred to in paragraph 2-3 of Section 7.1, references 13 and 14 of the original
# paper, and the checksums file from the tensorflow_datasets package [1] is also supported.
# Some filenames in those "speech_commands_test_set_v0.0x.tar.gz" archives have the form
# "xxx.wav.wav", so file extensions twice needs to be stripped twice.
# [1] https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/url_checksums/speech_commands.txt
utterance_number = int(stub)
# Load audio
waveform, sample_rate = torchaudio.load(filepath)
return waveform, sample_rate, label, utterance_number
class HAL_KW_DATASET(Dataset):
"""Create a Dataset for Hal9k Commands.
root (str or Path): Path to the directory where the dataset is found.
or the type of the dataset to dowload.
Allowed type values are ``"speech_commands_v0.01"`` and ``"speech_commands_v0.02"``
(default: ``"speech_commands_v0.02"``)
folder_in_archive (str, optional):
The top-level directory of the dataset. (default: ``"SpeechCommands"``)
subset (str or None, optional):
Select a subset of the dataset [None, "training", "validation", "testing"]. None means
the whole dataset. "validation" and "testing" are defined in "validation_list.txt" and
"testing_list.txt", respectively, and "training" is the rest. Details for the files
"validation_list.txt" and "testing_list.txt" are explained in the README of the dataset
and in the introduction of Section 7 of the original paper and its reference 12. The
original paper can be found `here <https://arxiv.org/pdf/1804.03209.pdf>`_. (Default: ``None``)
"""
def __init__(self,
root: Union[str, Path],
folder_in_archive: str = FOLDER_IN_ARCHIVE,
subset: Optional[str] = None,
) -> None:
assert subset is None or subset in ["training", "validation", "testing"]
"When `subset` not None, it must take a value from "
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
self._path = os.path.join(root, folder_in_archive)
if subset == "validation":
self._walker = _load_list(self._path, "validation_list.txt")
elif subset == "testing":
self._walker = _load_list(self._path, "testing_list.txt")
elif subset == "training":
excludes = set(_load_list(self._path, "validation_list.txt", "testing_list.txt"))
walker = sorted(str(p) for p in Path(self._path).glob('*/*.wav'))
self._walker = [
w for w in walker
if os.path.normpath(w) not in excludes
]
else:
walker = sorted(str(p) for p in Path(self._path).glob('*/*.wav'))
self._walker = [w for w in walker if EXCEPT_FOLDER not in w]
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
(Tensor, int, str, str, int):
``(waveform, sample_rate, label, speaker_id, utterance_number)``
"""
fileid = self._walker[n]
return low_hal_kw_item(fileid, self._path)
def __len__(self) -> int:
return len(self._walker)
def main():
DATASET = HAL_KW_DATASET("data")
if __name__ == "__main__":
main()