-
Notifications
You must be signed in to change notification settings - Fork 0
/
visuals.py
156 lines (127 loc) · 5.69 KB
/
visuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
###########################################
# Suppress matplotlib user warnings
# Necessary for newer version of matplotlib
import warnings
warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib")
#
# Display inline matplotlib plots with IPython
from IPython import get_ipython
get_ipython().run_line_magic('matplotlib', 'inline')
###########################################
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def filter_data(data, condition):
"""
Remove elements that do not match the condition provided.
Takes a data list as input and returns a filtered list.
Conditions should be a list of strings of the following format:
'<field> <op> <value>'
where the following operations are valid: >, <, >=, <=, ==, !=
Example: ["Sex == 'male'", 'Age < 18']
"""
field, op, value = condition.split(" ")
# convert value into number or strip excess quotes if string
try:
value = float(value)
except:
value = value.strip("\'\"")
# get booleans for filtering
if op == ">":
matches = data[field] > value
elif op == "<":
matches = data[field] < value
elif op == ">=":
matches = data[field] >= value
elif op == "<=":
matches = data[field] <= value
elif op == "==":
matches = data[field] == value
elif op == "!=":
matches = data[field] != value
else: # catch invalid operation codes
raise Exception("Invalid comparison operator. Only >, <, >=, <=, ==, != allowed.")
# filter data and outcomes
data = data[matches].reset_index(drop = True)
return data
def survival_stats(data, outcomes, key, filters = []):
"""
Print out selected statistics regarding survival, given a feature of
interest and any number of filters (including no filters)
"""
# Check that the key exists
if key not in data.columns.values :
print "'{}' is not a feature of the Titanic data. Did you spell something wrong?".format(key)
return False
# Return the function before visualizing if 'Cabin' or 'Ticket'
# is selected: too many unique categories to display
if(key == 'Cabin' or key == 'PassengerId' or key == 'Ticket'):
print "'{}' has too many unique categories to display! Try a different feature.".format(key)
return False
# Merge data and outcomes into single dataframe
all_data = pd.concat([data, outcomes], axis = 1)
# Apply filters to data
for condition in filters:
all_data = filter_data(all_data, condition)
# Create outcomes DataFrame
all_data = all_data[[key, 'Survived']]
# Create plotting figure
plt.figure(figsize=(8,6))
# 'Numerical' features
if(key == 'Age' or key == 'Fare'):
# Remove NaN values from Age data
all_data = all_data[~np.isnan(all_data[key])]
# Divide the range of data into bins and count survival rates
min_value = all_data[key].min()
max_value = all_data[key].max()
value_range = max_value - min_value
# 'Fares' has larger range of values than 'Age' so create more bins
if(key == 'Fare'):
bins = np.arange(0, all_data['Fare'].max() + 20, 20)
if(key == 'Age'):
bins = np.arange(0, all_data['Age'].max() + 10, 10)
# Overlay each bin's survival rates
nonsurv_vals = all_data[all_data['Survived'] == 0][key].reset_index(drop = True)
surv_vals = all_data[all_data['Survived'] == 1][key].reset_index(drop = True)
plt.hist(nonsurv_vals, bins = bins, alpha = 0.6,
color = 'red', label = 'Did not survive')
plt.hist(surv_vals, bins = bins, alpha = 0.6,
color = 'green', label = 'Survived')
# Add legend to plot
plt.xlim(0, bins.max())
plt.legend(framealpha = 0.8)
# 'Categorical' features
else:
# Set the various categories
if(key == 'Pclass'):
values = np.arange(1,4)
if(key == 'Parch' or key == 'SibSp'):
values = np.arange(0,np.max(data[key]) + 1)
if(key == 'Embarked'):
values = ['C', 'Q', 'S']
if(key == 'Sex'):
values = ['male', 'female']
# Create DataFrame containing categories and count of each
frame = pd.DataFrame(index = np.arange(len(values)), columns=(key,'Survived','NSurvived'))
for i, value in enumerate(values):
frame.loc[i] = [value, \
len(all_data[(all_data['Survived'] == 1) & (all_data[key] == value)]), \
len(all_data[(all_data['Survived'] == 0) & (all_data[key] == value)])]
# Set the width of each bar
bar_width = 0.4
# Display each category's survival rates
for i in np.arange(len(frame)):
nonsurv_bar = plt.bar(i-bar_width, frame.loc[i]['NSurvived'], width = bar_width, color = 'r')
surv_bar = plt.bar(i, frame.loc[i]['Survived'], width = bar_width, color = 'g')
plt.xticks(np.arange(len(frame)), values)
plt.legend((nonsurv_bar[0], surv_bar[0]),('Did not survive', 'Survived'), framealpha = 0.8)
# Common attributes for plot formatting
plt.xlabel(key)
plt.ylabel('Number of Passengers')
plt.title('Passenger Survival Statistics With \'%s\' Feature'%(key))
plt.show()
# Report number of passengers with missing values
if sum(pd.isnull(all_data[key])):
nan_outcomes = all_data[pd.isnull(all_data[key])]['Survived']
print "Passengers with missing '{}' values: {} ({} survived, {} did not survive)".format( \
key, len(nan_outcomes), sum(nan_outcomes == 1), sum(nan_outcomes == 0))