forked from wdd233/3DSRCNN-pytorch-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3dcnn.py
134 lines (106 loc) · 5.31 KB
/
3dcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse, os
import h5py
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import random
import time
from torch.utils.data import DataLoader
from model import Net
from dataset import DatasetFromHdf5
# Training settings
parser = argparse.ArgumentParser(description="Pytorch 3DSRCNN")
parser.add_argument("--batchSize", type=int, default=64, help="Training batch size")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--nEpochs", type=int, default=10, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.1, help="Learning Rate. Default=0.1")
parser.add_argument("--step", type=int, default=10, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=10")
parser.add_argument("--clip", type=float, default=0.4, help="Clipping Gradients. Default=0.4")
parser.add_argument("--threads", type=int, default=0, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="Weight decay, Default: 1e-4")
parser.add_argument('--train_path',type=str,default="train_data/3dtrain.h5",help='Path to train dataset')
parser.add_argument('--memo', default= 'L_', type=str, help='prefix of logger ')
def main():
global opt, model
opt = parser.parse_args()
print(opt)
# Sets the seed for generating random numbers to a non-deterministic random number.
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
# This flag allows you to enable the inbuilt cudnn auto-tuner
# to find the best algorithm to use for your hardware.
cudnn.benchmark = True
# Loading datasets
print("===> Loading datasets")
train_set = DatasetFromHdf5(opt.train_path)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize,
shuffle=True)
# Building model
print("===> Building model")
model = Net(2)
criterion = nn.SmoothL1Loss()
print("===> Setting Optimizer")
#TODO
# for i in model.parameters():
# print(i.grad)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay)
print("===> Training")
model_saved_prefix = get_time_stamp(time) + opt.memo + "_model"
saved_model_path = os.path.join("model/", model_saved_prefix)
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch, saved_model_path)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
# lr=0.01
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
lr = adjust_learning_rate(optimizer, epoch - 1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train() # model设为Train模式
iteration_100_count = 0
for iteration, batch in enumerate(training_data_loader, 1):
print(iteration)
input, target = batch[0], batch[1] # 因为是target设为false
input = input.unsqueeze(1)
target = target.unsqueeze(1)
# print('input size:',input.shape)
pre = time.time()
loss = criterion(model(input), target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), opt.clip)
optimizer.step()
consume_time = time.time() - pre
iteration_100_count += consume_time
if iteration == len(training_data_loader):
print("===> Epoch[{}]({}/{}): Loss: {:.10f},consume time:{}".format(epoch, iteration,
len(training_data_loader),
loss.data.item(), iteration_100_count))
iteration_100_count = 0
if iteration % 100 == 0:
# for net in model.parameters():
# print(net.grad)
print("===> Epoch[{}]({}/{}): Loss: {:.10f},consume time:{}".format(epoch, iteration,
len(training_data_loader),
loss.data.item(), iteration_100_count))
iteration_100_count = 0
def save_checkpoint(model, epoch, saved_path="model/"):
model_out_path = os.path.join(saved_path, "model_epoch_{}.pkl".format(epoch))
state = {"epoch": epoch, "model": model}
if not os.path.exists(saved_path):
os.makedirs(saved_path)
torch.save(state, model_out_path)
print("=========Checkpoint saved to {}".format(model_out_path))
def get_time_stamp(time):
timeStamp = time.strftime("%m%d-%H%M", time.localtime(time.time()))
return timeStamp
if __name__ == "__main__":
import torch
os.environ["CUDA_VISIBLE_DEVICES"] = ' 3 '
main()