forked from wdd233/3DSRCNN-pytorch-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
157 lines (134 loc) · 6.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse, os
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model import Net
from dataset import DatasetFromHdf5
import time
import numpy as np
import re
# Training settings
parser = argparse.ArgumentParser(description="Pytorch 3DSRCNN")
parser.add_argument("--batchSize", type=int, default=64, help="Training batch size")
parser.add_argument("--nEpochs", type=int, default=100, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.1, help="Learning Rate. Default=0.1")
parser.add_argument("--step", type=int, default=10, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=10")
parser.add_argument("--cuda", type=int,default=0, help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--clip", type=float, default=0.4, help="Clipping Gradients. Default=0.4")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="Weight decay, Default: 1e-4")
parser.add_argument('--pretrained', default='', type=str, help='path to pretrained model (default: none)')
parser.add_argument('--train_path',type=str,default="train_data/3dtrain.h5",help='Path to train dataset')
parser.add_argument('--memo', default= 'L_', type=str, help='prefix of logger ')
def main():
global opt, model
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5(opt.train_path)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print("===> Building model")
model = Net(3)
################Loss function!!!!!!!!
# criterion = nn.MSELoss(size_average=True)
criterion = nn.SmoothL1Loss()
################
print("===> Setting GPU")
if cuda:
model = torch.nn.DataParallel(model, device_ids=list(range(cuda))).cuda()
criterion = criterion.cuda()
print("=======>Using GPU :%s"%range(cuda))
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
#TODO
# for i in model.parameters():
# print(i.grad)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay)
# optimizer=optim.Adam(model.parameters(),lr=0.01)
# optimizer=optim.Adam(model.parameters(),lr=0.001)
print("===> Training")
model_saved_prefix = get_time_stamp(time) + opt.memo + "_model"
saved_model_path = os.path.join("model/", model_saved_prefix)
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch, saved_model_path)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
# lr=0.01
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
lr = adjust_learning_rate(optimizer, epoch-1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()#model设为Train模式
iteration_100_count = 0
for iteration, batch in enumerate(training_data_loader, 1):
input, target = batch[0], batch[1]#因为是target设为false
# print('input size:',input.shape)
if opt.cuda:
input = input.cuda()
target = target.cuda()
pre = time.time()
loss = criterion(model(input), target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(),opt.clip)
optimizer.step()
consume_time = time.time()-pre
iteration_100_count += consume_time
if iteration == len(training_data_loader):
print("===> Epoch[{}]({}/{}): Loss: {:.10f},consume time:{}".format(epoch, iteration, len(training_data_loader), loss.data.item(),iteration_100_count))
iteration_100_count=0
if iteration % 100 == 0:
# for net in model.parameters():
# print(net.grad)
print("===> Epoch[{}]({}/{}): Loss: {:.10f},consume time:{}".format(epoch, iteration, len(training_data_loader), loss.data.item(),iteration_100_count))
iteration_100_count=0
def save_checkpoint(model, epoch, saved_path="model/"):
model_out_path = os.path.join(saved_path, "model_epoch_{}.pkl".format(epoch))
state = {"epoch": epoch ,"model": model}
if not os.path.exists(saved_path):
os.makedirs(saved_path)
torch.save(state, model_out_path)
print("=========Checkpoint saved to {}".format(model_out_path))
def get_time_stamp(time):
timeStamp = time.strftime("%m%d-%H%M", time.localtime(time.time()))
return timeStamp
if __name__ == "__main__":
import torch
os.environ["CUDA_VISIBLE_DEVICES"] = ' 3 '
main()