-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
1020 lines (898 loc) · 41 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% MICRO50
@inproceedings{li2017drisa,
title={DRISA: A DRAM-based Reconfigurable In-Situ Accelerator},
author={Li, Shuangchen and Niu, Dimin and Malladi, Krishna T and Zheng, Hongzhong and Brennan, Bob and Xie, Yuan},
booktitle={Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture},
pages={288--301},
year={2017},
organization={ACM}
}
@inproceedings{park2017scaleout,
title={Scale-out acceleration for machine learning},
author={Park, Jongse and Sharma, Hardik and Mahajan, Divya and Kim, Joon Kyung and Olds, Preston and Esmaeilzadeh, Hadi},
booktitle={Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture},
pages={367--381},
year={2017},
organization={ACM}
}
@inproceedings{hill2017deftnn,
title={DeftNN: addressing bottlenecks for DNN execution on GPUs via synapse vector elimination and near-compute data fission},
author={Hill, Parker and Jain, Animesh and Hill, Mason and Zamirai, Babak and Hsu, Chang-Hong and Laurenzano, Michael A and Mahlke, Scott and Tang, Lingjia and Mars, Jason},
booktitle={Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture},
pages={786--799},
year={2017},
organization={ACM}
}
%% MICRO49
@inproceedings{caulfield2016cloudscale,
title={A cloud-scale acceleration architecture},
author={Caulfield, Adrian M and Chung, Eric S and Putnam, Andrew and Angepat, Hari and Fowers, Jeremy and Haselman, Michael and Heil, Stephen and Humphrey, Matt and Kaur, Puneet and Kim, Joo-Young and others},
booktitle={Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on},
pages={1--13},
year={2016},
organization={IEEE}
}
%% ASPLOS 2017
@inproceedings{gao2017tetris,
title={TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory},
author={Gao, Mingyu and Pu, Jing and Yang, Xuan and Horowitz, Mark and Kozyrakis, Christos},
booktitle={Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems},
pages={751--764},
year={2017},
organization={ACM}
}
@inproceedings{rajbhandari2017optimizing,
title={Optimizing CNNs on Multicores for Scalability, Performance and Goodput},
author={Rajbhandari, Samyam and He, Yuxiong and Ruwase, Olatunji and Carbin, Michael and Chilimbi, Trishul},
booktitle={Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems},
pages={267--280},
year={2017},
organization={ACM}
}
%% ISCA 2016
@inproceedings{albericio2016cnvlutin,
author={J. Albericio and P. Judd and T. Hetherington and T. Aamodt and N. E. Jerger and A. Moshovos},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing},
year={2016},
volume={},
number={},
pages={1-13},
keywords={decision making;memory architecture;neural nets;parallel architectures;performance evaluation;power aware computing;Cnvlutin;DNN;ED2P;EDP;computation elimination decisions;data parallel units;data storage format;data storage format encoding;data-parallel architecture;energy delay product;energy delay squared product;energy efficiency;hardware acceleration;hierarchical data-parallel units;image classification;ineffectual-neuron-free deep neural network computing;memory hierarchy;value-based approach;zero-valued operand multiplications;Acceleration;Computer architecture;Delays;Feature extraction;Hardware;Neural networks;Neurons},
doi={10.1109/ISCA.2016.11},
ISSN={1063-6897},
month={June},}
@inproceedings{shafiee2016isaac,
author={A. Shafiee and A. Nag and N. Muralimanohar and R. Balasubramonian and J. P. Strachan and M. Hu and R. S. Williams and V. Srikumar},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars},
year={2016},
volume={},
number={},
pages={14-26},
keywords={DRAM chips;digital arithmetic;learning (artificial intelligence);memristor circuits;neural nets;ADC;DaDianNao architecture;ISAAC architecture;analog-to-digital conversion;convolutional neural network accelerator;data encoding;digital arithmetic operations;dot-product operations;eDRAM banks;in-situ analog arithmetic crossbars;in-situ processing approach;machine learning algorithms;memristor crossbar arrays;memristor storage;pipelined architecture design;Biological neural networks;Computer architecture;Kernel;Machine learning algorithms;Memristors;Neurons;Pipelines;CNN;DNN;accelerator;analog;memristor;neural},
doi={10.1109/ISCA.2016.12},
ISSN={1063-6897},
month={June},}
@inproceedings{han2016eie,
author={S. Han and X. Liu and H. Mao and J. Pu and A. Pedram and M. A. Horowitz and W. J. Dally},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={EIE: Efficient Inference Engine on Compressed Deep Neural Network},
year={2016},
volume={},
number={},
pages={243-254},
keywords={DRAM chips;SRAM chips;matrix multiplication;neural nets;sparse matrices;AlexNet;DNN;DRAM;EIE;VGGNet;compressed deep neural network;embedded system;energy efficient inference engine;onchip SRAM;power dissipation;sparse matrix-vector multiplication;weight sharing;Acceleration;Computational modeling;Hardware;Neural networks;Random access memory;Sparse matrices;System-on-chip;ASIC;Algorithm-Hardware co-Design;Deep Learning;Hardware Acceleration;Model Compression},
doi={10.1109/ISCA.2016.30},
ISSN={1063-6897},
month={June},}
@inproceedings{likamwa2016redeye,
author={R. LiKamWa and Y. Hou and Y. Gao and M. Polansky and L. Zhong},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision},
year={2016},
volume={},
number={},
pages={255-266},
keywords={computer vision;image sensors;neural nets;quantisation (signal);ConvNet image sensor architecture;RedEye;algorithmic cyclic reuse;analog domain;analog readout circuitry;cloudlet-based system energy reduction;column-parallel design;computation-based system energy reduction;continuous mobile vision;convolutional neural network;data traffic;image frame capturing;intensive computation;physical design reuse;programmable mechanisms;quantization processing;sensor energy reduction;vision feature processing;vision processing;Analog circuits;Arrays;Complexity theory;Convolution;Image sensors;Mobile communication;Neurons;computer vision;continuous mobile vision;pre-quantization processing;programmable analog computing},
doi={10.1109/ISCA.2016.31},
ISSN={1063-6897},
month={June},}
@inproceedings{reagen2016minerva,
author={B. Reagen and P. Whatmough and R. Adolf and S. Rama and H. Lee and S. K. Lee and J. M. Hernández-Lobato and G. Y. Wei and D. Brooks},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators},
year={2016},
volume={},
number={},
pages={267-278},
keywords={neural nets;DNN hardware accelerators;DNN model accuracy;Minerva;SRAM voltages;active hardware fault detection;automated codesign;classification tasks;deep neural network accelerators;deep neural networks;domain-aware error mitigation;fixed-point accelerator baseline;general-purpose hardware;heterogeneous datatype optimization;inline predication;magnitude improvement;mobile devices;power-constrained IoT;small activity values;specialized hardware;ultra-low power DNN accelerators;Circuit faults;Hardware;Integrated circuit modeling;Libraries;Optimization;Random access memory;Space exploration},
doi={10.1109/ISCA.2016.32},
ISSN={1063-6897},
month={June},}
@inproceedings{chen2016eyeriss,
author={Y. H. Chen and J. Emer and V. Sze},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks},
year={2016},
volume={},
number={},
pages={367-379},
keywords={computer architecture;convolution;data flow computing;neural nets;power aware computing;AlexNet CNN configurations;Eyeriss;PE local storage;RS dataflow;computational complexity;data movement energy consumption minimization;deep CNNs;deep convolutional neural networks;direct interPE communication;energy-efficient CNN processing;energy-efficient dataflow;feature map pixels;high-dimensional convolutions;local data reuse;parallel processing;partial sum accumulations;processing engine local storage;row-stationary dataflow;spatial architecture;spatial parallelism;Arrays;Parallel processing;Radio frequency;Random access memory;Shape;Throughput;Convolutional Neural Networks;Dataflow;Energy Efficiency;Spatial Architecture},
doi={10.1109/ISCA.2016.40},
ISSN={1063-6897},
month={June},}
@inproceedings{kim2016neurocube,
author={D. Kim and J. Kung and S. Chai and S. Yalamanchili and S. Mukhopadhyay},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={Neurocube: A Programmable Digital Neuromorphic Architecture with High-Density 3D Memory},
year={2016},
volume={},
number={},
pages={380-392},
keywords={logic circuits;memory architecture;neural nets;storage management chips;HMC;Neurocube;convolutional neural network;high-density 3D memory;logic tier;memory centric computing;neural computing;programmable digital neuromorphic architecture;Artificial neural networks;Biological neural networks;Computer architecture;Neurons;Random access memory;Three-dimensional displays;Neural nets;Neurocomputers;Neuromorphic computing},
doi={10.1109/ISCA.2016.41},
ISSN={1063-6897},
month={June},}
@inproceedings{liu2016cambricon,
author={S. Liu and Z. Du and J. Tao and D. Han and T. Luo and Y. Xie and Y. Chen and T. Chen},
booktitle={2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)},
title={Cambricon: An Instruction Set Architecture for Neural Networks},
year={2016},
volume={},
number={},
pages={393-405},
keywords={instruction sets;neural net architecture;power aware computing;Cambricon;NN high-level functional blocks;TSMC 65nm technology;application-specific hardware accelerators;control instructions;data transfer instructions;domain-specific ISA;domain-specific instruction set architecture;energy-efficiency;general-purpose processors;load-store architecture;logical instructions;matrix instructions;neural networks;scalar instructions;vector instructions;Artificial neural networks;Computer architecture;Data transfer;Ground penetrating radar;Libraries;Registers;System-on-chip},
doi={10.1109/ISCA.2016.42},
ISSN={1063-6897},
month={June},}
%% ISCA 2015
@INPROCEEDINGS{hauswald2015djinnandtonic,
author={J. Hauswald and Y. Kang and M. A. Laurenzano and Q. Chen and C. Li and T. Mudge and R. G. Dreslinski and J. Mars and L. Tang},
booktitle={2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)},
title={DjiNN and Tonic: DNN as a service and its implications for future warehouse scale computers},
year={2015},
volume={},
number={},
pages={27-40},
keywords={graphics processing units;learning (artificial intelligence);neural nets;DjiNN;NVIDIA K40 GPU;Tonic suite;WSC architectures;deep neural networks;homogeneous integrated GPU servers;machine learning;warehouse scale computers;Face;Graphics processing units;Libraries;Neural networks;Neurons;Servers;Throughput},
doi={10.1145/2749469.2749472},
ISSN={1063-6897},
month={June},}
@inproceedings{du2015shidiannao,
author={Z. Du and R. Fasthuber and T. Chen and P. Ienne and L. Li and T. Luo and X. Feng and Y. Chen and O. Temam},
booktitle={ISCA},
title={ShiDianNao: Shifting vision processing closer to the sensor},
year={2015},
month={June},
}
%% ISCA 2014
@inproceedings{putnam2014reconfigurable,
title={A reconfigurable fabric for accelerating large-scale datacenter services},
author={Putnam, Andrew and Caulfield, Adrian M and Chung, Eric S and Chiou, Derek and Constantinides, Kypros and Demme, John and Esmaeilzadeh, Hadi and Fowers, Jeremy and Gopal, Gopi Prashanth and Gray, Jan and others},
booktitle={Computer Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on},
pages={13--24},
year={2014},
organization={IEEE}
}
%% FPGA 2015
@inproceedings{zhang2015optimizing,
title={Optimizing fpga-based accelerator design for deep convolutional neural networks},
author={Zhang, Chen and Li, Peng and Sun, Guangyu and Guan, Yijin and Xiao, Bingjun and Cong, Jason},
booktitle={Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays},
pages={161--170},
year={2015},
organization={ACM}
}
%% Other
@article{ovtcharov2015accelerating,
title={Accelerating deep convolutional neural networks using specialized hardware},
author={Ovtcharov, Kalin and Ruwase, Olatunji and Kim, Joo-Young and Fowers, Jeremy and Strauss, Karin and Chung, Eric S},
journal={Microsoft Research Whitepaper},
volume={2},
number={11},
year={2015}
}
@inproceedings{lee2009convolutional,
title={Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations},
author={Lee, Honglak and Grosse, Roger and Ranganath, Rajesh and Ng, Andrew Y},
booktitle={ICML},
year={2009},
organization={ACM}
}
@misc{karpathy2015cs231n,
title={CS231n Convolutional Neural Networks for Visual Recognition},
author={Karpathy, Andrej},
year={2015},
url="\url{http://cs231n.github.io/convolutional-networks/}",
}
@inproceedings{vanhoucke2011improving,
title={Improving the speed of neural networks on CPUs},
author={Vanhoucke, Vincent and Senior, Andrew and Mao, Mark Z},
booktitle={Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop},
volume={1},
pages={4},
year={2011}
}
% HTM Hardware Accelerators
@inproceedings{walter2017spinnaker,
author={F. Walter and M. Sandner and F. Rcöhrbein and A. Knoll},
booktitle={ISCAS},
title={Towards a neuromorphic implementation of hierarchical temporal memory on SpiNNaker},
year={2017},
month={May},
}
@inproceedings{gabrielsson2012hierarchical,
author={P. Gabrielsson and R. König and U. Johansson},
booktitle={CIFEr},
title={Hierarchical Temporal Memory-based algorithmic trading of financial markets},
year={2012},
month={March},
}
@article{sinkevicius2011monitoring,
title={Monitoring of humans traffic using hierarchical temporal memory algorithms},
author={Sinkevicius, S and Simutis, R and Raudonis, V},
journal={Elektronika ir Elektrotechnika},
volume={115},
number={9},
pages={91--96},
year={2011}
}
@inproceedings{zhituo2012content,
title={A Content-Based Image Retrieval System Using Multiple Hierarchical Temporal Memory Classifiers},
author={Zhituo, Xia and Hao, Ruan and Hao, Wang},
booktitle={ISCID},
volume={2},
pages={438--441},
year={2012},
organization={IEEE}
}
@article{bobier2007handwritten,
title={Handwritten digit recognition using hierarchical temporal memory},
author={Bobier, Bruce},
journal={University of Guelph},
year={2007}
}
% CONVs take 90% of cycles in CNN
%% Yangqing's Dissertation
@book{jia2014learning,
title={Learning semantic image representations at a large scale},
author={Jia, Yangqing},
year={2014},
publisher={University of California, Berkeley}
}
@inproceedings{ren2015vectorization,
title={On Vectorization of Deep Convolutional Neural Networks for Vision Tasks.},
author={Ren, Jimmy SJ and Xu, Li},
booktitle={AAAI},
pages={1840--1846},
year={2015}
}
% Other
@article{fridman2017autonomous,
title={MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interaction with Automation},
author={Fridman, Lex and Brown, Daniel E and Glazer, Michael and Angell, William and Dodd, Spencer and Jenik, Benedikt and Terwilliger, Jack and Kindelsberger, Julia and Ding, Li and Seaman, Sean and others},
journal={arXiv preprint arXiv:1711.06976},
year={2017}
}
@article{laughlin2003communication,
title={Communication in neuronal networks},
author={Laughlin, Simon B and Sejnowski, Terrence J},
journal={Science},
volume={301},
number={5641},
pages={1870--1874},
year={2003},
publisher={American Association for the Advancement of Science}
}
@techreport{rosenblatt_principles_1961,
title = {Principles of neurodynamics. perceptrons and the theory of brain mechanisms},
institution = {CORNELL AERONAUTICAL LAB INC BUFFALO NY},
author = {Rosenblatt, Frank},
year = {1961},
keywords = {multilayer perceptrons}
}
@inproceedings{dhawan2012fathom,
title={Fathom: A browser-based network measurement platform},
author={Dhawan, Mohan and Samuel, Justin and Teixeira, Renata and Kreibich, Christian and Allman, Mark and Weaver, Nicholas and Paxson, Vern},
booktitle={Proceedings of the 2012 ACM conference on Internet measurement conference},
pages={73--86},
year={2012},
organization={ACM}
}
@article{dlugosch2014efficient,
title={An efficient and scalable semiconductor architecture for parallel automata processing},
author={Dlugosch, Paul and Brown, Dave and Glendenning, Paul and Leventhal, Michael and Noyes, Harold},
journal={IEEE Transactions on Parallel and Distributed Systems},
volume={25},
number={12},
pages={3088--3098},
year={2014},
publisher={IEEE}
}
@techreport{rosenblatt1961principles,
title={Principles of neurodynamics. perceptrons and the theory of brain mechanisms},
author={Rosenblatt, Frank},
year={1961},
institution={CORNELL AERONAUTICAL LAB INC BUFFALO NY}
}
@article{ahmad2015properties,
title={Properties of sparse distributed representations and their application to hierarchical temporal memory},
author={Ahmad, Subutai and Hawkins, Jeff},
journal={arXiv preprint arXiv:1503.07469},
year={2015}
}
@article{mnatzaganian2017mathematical,
title={A mathematical formalization of hierarchical temporal memory’s spatial pooler},
author={Mnatzaganian, James and Fokou{\'e}, Ernest and Kudithipudi, Dhireesha},
journal={Frontiers in Robotics and AI},
volume={3},
pages={81},
year={2017},
publisher={Frontiers}
}
@article{mcculloch1943logical,
title={A logical calculus of the ideas immanent in nervous activity},
author={McCulloch, Warren S and Pitts, Walter},
journal={The bulletin of mathematical biophysics},
volume={5},
number={4},
pages={115--133},
year={1943},
publisher={Springer}
}
@book{hebb2005organization,
title={The organization of behavior: A neuropsychological theory},
author={Hebb, Donald Olding},
year={2005},
publisher={Psychology Press}
}
@article{farley1954simulation,
title={Simulation of self-organizing systems by digital computer},
author={Farley, BWAC and Clark, W},
journal={Transactions of the IRE Professional Group on Information Theory},
volume={4},
number={4},
pages={76--84},
year={1954},
publisher={IEEE}
}
@article{rochester1956tests,
title={Tests on a cell assembly theory of the action of the brain, using a large digital computer},
author={Rochester, Nathaniel and Holland, J and Haibt, L and Duda, W},
journal={IRE Transactions on information Theory},
volume={2},
number={3},
pages={80--93},
year={1956},
publisher={IEEE}
}
@article{lecun1999object,
title={Object recognition with gradient-based learning},
author={LeCun, Yann and Haffner, Patrick and Bottou, L{\'e}on and Bengio, Yoshua},
journal={Shape, contour and grouping in computer vision},
pages={823--823},
year={1999},
publisher={Springer}
}
@article{economist2010data,
title = {Data, data everywhere},
issn = {0013-0613},
url = {http://www.economist.com/node/15557443},
abstract = {Information has gone from scarce to superabundant. That brings huge new benefits, says Kenneth Cukier (interviewed here)—but also big headaches},
urldate = {2018-02-05},
journal = {The Economist},
month = feb,
year = {2010},
file = {The Economist Snapshot:/Users/matejaputic/Zotero/storage/S8U97HWK/15557443.html:text/html}
}
@inproceedings{moons2016energy,
title={Energy-efficient convnets through approximate computing},
author={Moons, Bert and De Brabandere, Bert and Van Gool, Luc and Verhelst, Marian},
booktitle={Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on},
pages={1--8},
year={2016},
organization={IEEE}
}
@inproceedings{moons2017dvafs,
title={DVAFS: Trading computational accuracy for energy through dynamic-voltage-accuracy-frequency-scaling},
author={Moons, Bert and Uytterhoeven, Roel and Dehaene, Wim and Verhelst, Marian},
booktitle={2017 Design, Automation \& Test in Europe Conference \& Exhibition (DATE)},
pages={488--493},
year={2017},
organization={IEEE}
}
@inproceedings{kung2015power,
title={A power-aware digital feedforward neural network platform with backpropagation driven approximate synapses},
author={Kung, Jaeha and Kim, Duckhwan and Mukhopadhyay, Saibal},
booktitle={Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM International Symposium on},
pages={85--90},
year={2015},
organization={IEEE}
}
@misc{kumar2013introducing,
title={Introducing qualcomm zeroth processors: Brain-inspired computing},
author={Kumar, Samir},
year={2013},
publisher={Qualcomm}
}
@inproceedings{preissl2012compass,
title={Compass: A scalable simulator for an architecture for cognitive computing},
author={Preissl, Robert and Wong, Theodore M and Datta, Pallab and Flickner, Myron and Singh, Raghavendra and Esser, Steven K and Risk, William P and Simon, Horst D and Modha, Dharmendra S},
booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},
pages={54},
year={2012},
organization={IEEE Computer Society Press}
}
@article{painkras2013spinnaker,
title={SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation},
author={Painkras, Eustace and Plana, Luis A and Garside, Jim and Temple, Steve and Galluppi, Francesco and Patterson, Cameron and Lester, David R and Brown, Andrew D and Furber, Steve B},
journal={IEEE Journal of Solid-State Circuits},
volume={48},
number={8},
pages={1943--1953},
year={2013},
publisher={IEEE}
}
@article{merolla2014million,
title={A million spiking-neuron integrated circuit with a scalable communication network and interface},
author={Merolla, Paul A and Arthur, John V and Alvarez-Icaza, Rodrigo and Cassidy, Andrew S and Sawada, Jun and Akopyan, Filipp and Jackson, Bryan L and Imam, Nabil and Guo, Chen and Nakamura, Yutaka and others},
journal={Science},
volume={345},
number={6197},
pages={668--673},
year={2014},
publisher={American Association for the Advancement of Science}
}
@ARTICLE{BillaudelleAhmad,
author = {Sebastian Billaudelle and Subutai Ahmad},
title = {Porting HTM Models to the Heidelberg Neuromorphic Computing Platform},
journal = {eprint arXiv:1505.02142},
year = 2015,
month = 5,
}
@mastersthesis{EpiphanyThesis,
author = {Xi Zhou and Yaoyao Luo},
title = {Implementation of Hierarchical Temporal Memory on a Many-Core Architecture},
school = {Halmstad University},
year = 2012,
month = 12,
}
@mastersthesis{FPGAThesis,
author = {Abdullah M. Zyarah},
title = {Design and Analysis of a Reconfigurable Hierarchical Temporal Memory Architecture},
school = {RIT},
year = 2015,
}
@mastersthesis{InspiredThesis,
author = {Mandar Deshpande},
title = {FPGA Implementation and Acceleration of Building blocks for Biologically Inspired Computational Models},
school = {PDX},
year = 2011,
}
@inproceedings{zhang2015approxann,
title={ApproxANN: an approximate computing framework for artificial neural network},
author={Zhang, Qian and Wang, Ting and Tian, Ye and Yuan, Feng and Xu, Qiang},
booktitle={Proceedings of the 2015 Design, Automation \& Test in Europe Conference \& Exhibition},
pages={701--706},
year={2015},
organization={EDA Consortium}
}
@inproceedings{venkataramani2014axnn,
title={AxNN: energy-efficient neuromorphic systems using approximate computing},
author={Venkataramani, Swagath and Ranjan, Ashish and Roy, Kaushik and Raghunathan, Anand},
booktitle={Proceedings of the 2014 international symposium on Low power electronics and design},
pages={27--32},
year={2014},
organization={ACM}
}
@article{du2015leveraging,
title={Leveraging the error resilience of neural networks for designing highly energy efficient accelerators},
author={Du, Zidong and Lingamneni, Avinash and Chen, Yunji and Palem, Krishna V and Temam, Olivier and Wu, Chengyong},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
volume={34},
number={8},
pages={1223--1235},
year={2015},
publisher={IEEE}
}
@article{yasoubi2017power,
title={Power-efficient accelerator design for neural networks using computation reuse},
author={Yasoubi, Ali and Hojabr, Reza and Modarressi, Mehdi},
journal={IEEE Computer Architecture Letters},
volume={16},
number={1},
pages={72--75},
year={2017},
publisher={IEEE}
}
@inproceedings{han2015learning,
title={Learning both weights and connections for efficient neural network},
author={Han, Song and Pool, Jeff and Tran, John and Dally, William},
booktitle={Advances in Neural Information Processing Systems},
pages={1135--1143},
year={2015}
}
@inproceedings{misailovic2014chisel,
title={Chisel: Reliability-and accuracy-aware optimization of approximate computational kernels},
author={Misailovic, Sasa and Carbin, Michael and Achour, Sara and Qi, Zichao and Rinard, Martin C},
booktitle={ACM SIGPLAN Notices},
volume={49},
number={10},
pages={309--328},
year={2014},
organization={ACM}
}
@inproceedings{esmaeilzadeh2012neural,
title={Neural acceleration for general-purpose approximate programs},
author={Esmaeilzadeh, Hadi and Sampson, Adrian and Ceze, Luis and Burger, Doug},
booktitle={Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture},
pages={449--460},
year={2012},
organization={IEEE Computer Society}
}
@inproceedings{venkataramani2013quality,
title={Quality programmable vector processors for approximate computing},
author={Venkataramani, Swagath and Chippa, Vinay K and Chakradhar, Srimat T and Roy, Kaushik and Raghunathan, Anand},
booktitle={Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture},
pages={1--12},
year={2013},
organization={ACM}
}
@article{judd2015reduced,
title={Reduced-precision strategies for bounded memory in deep neural nets},
author={Judd, Patrick and Albericio, Jorge and Hetherington, Tayler and Aamodt, Tor and Jerger, Natalie Enright and Urtasun, Raquel and Moshovos, Andreas},
journal={arXiv preprint arXiv:1511.05236},
year={2015}
}
@inproceedings{mazahir2016area,
title={An area-efficient consolidated configurable error correction for approximate hardware accelerators},
author={Mazahir, Sana and Hasan, Osman and Hafiz, Rehan and Shafique, Muhammad and Henkel, J{\"o}rg},
booktitle={Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE},
pages={1--6},
year={2016},
organization={IEEE}
}
@book{mohapatra2011approximate,
title={Approximate computing: Enabling voltage over-scaling in multimedia applications},
author={Mohapatra, Debabrata},
year={2011},
publisher={Purdue University}
}
@inproceedings{gupta2011impact,
title={IMPACT: imprecise adders for low-power approximate computing},
author={Gupta, Vaibhav and Mohapatra, Debabrata and Park, Sang Phill and Raghunathan, Anand and Roy, Kaushik},
booktitle={Proceedings of the 17th IEEE/ACM international symposium on Low-power electronics and design},
pages={409--414},
year={2011},
organization={IEEE Press}
}
@inproceedings{chippa2014storm,
title={StoRM: a stochastic recognition and mining processor},
author={Chippa, Vinay K and Venkataramani, Swagath and Roy, Kaushik and Raghunathan, Anand},
booktitle={Proceedings of the 2014 international symposium on Low power electronics and design},
pages={39--44},
year={2014},
organization={ACM}
}
@inproceedings{eldridge2014neural,
title={Neural network-based accelerators for transcendental function approximation},
author={Eldridge, Schuyler and Raudies, Florian and Zou, David and Joshi, Ajay},
booktitle={Proceedings of the 24th edition of the great lakes symposium on VLSI},
pages={169--174},
year={2014},
organization={ACM}
}
@inproceedings{jiao2017assessment,
title={An Assessment of Vulnerability of Hardware Neural Networks to Dynamic Voltage and Temperature Variations},
author={Jiao, Xun and Luo, Mulong and Lin, Jeng-Hau and Gupta, Rajesh K},
booktitle={IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, USA},
year={2017}
}
@article{zhang2017enabling,
title={Enabling Extreme Energy Efficiency Via Timing Speculation for Deep Neural Network Accelerators},
author={Zhang, Jeff and Ghodsi, Zahra and Rangineni, Kartheek and Garg, Siddharth},
year={2017}
}
@inproceedings{li2017understanding,
title={Understanding error propagation in deep learning neural network (DNN) accelerators and applications},
author={Li, Guanpeng and Hari, Siva Kumar Sastry and Sullivan, Michael and Tsai, Timothy and Pattabiraman, Karthik and Emer, Joel and Keckler, Stephen W},
booktitle={Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis},
pages={8},
year={2017},
organization={ACM}
}
@inproceedings{ernst2003razor,
title={Razor: A low-power pipeline based on circuit-level timing speculation},
author={Ernst, Dan and Kim, Nam Sung and Das, Shidhartha and Pant, Sanjay and Rao, Rajeev and Pham, Toan and Ziesler, Conrad and Blaauw, David and Austin, Todd and Flautner, Krisztian and others},
booktitle={Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture},
pages={7},
year={2003},
organization={IEEE Computer Society}
}
@article{wadden2016vasim,
title={VASim: An open virtual automata simulator for automata processing application and architecture research},
author={Wadden, Jack and Skadron, Kevin},
journal={Tech. Rep. CS2016--03, University of Virginia},
year={2016}
}
@unpublished{dean2017nips,
title={Machine Learning for Systems and Systems for Machine Learning},
author={Dean, Jeff},
year={2017},
note={Advances in Neural Information Processing Systems 30}
}
@misc{wikipedia2018neuroplasticity,
title = {Neuroplasticity},
copyright = {Creative Commons Attribution-ShareAlike License},
url = {https://en.wikipedia.org/w/index.php?title=Neuroplasticity&oldid=825984492},
language = {en},
urldate = {2018-04-11},
journal = {Wikipedia},
month = feb,
year = {2018},
note = {Page Version ID: 825984492},
}
@techreport{hawkins2006hierarchical,
title={Hierarchical temporal memory: Concepts, theory and terminology},
author={Hawkins, Jeff and George, Dileep},
year={2006},
institution={Technical report, Numenta}
}
@article{hawkins2010hierarchical,
title={Hierarchical temporal memory including HTM cortical learning algorithms},
author={Hawkins, Jeff and Ahmad, Subutai and Dubinsky, Donna},
journal={Techical report, Numenta, Inc, Palto Alto http://www. numenta. com/htmoverview/education/HTM\_CorticalLearningAlgorithms. pdf},
year={2010}
}
@inproceedings{doremalen2008spoken,
title={Spoken digit recognition using a hierarchical temporal memory},
author={Doremalen, Joost van and Boves, Lou},
booktitle={Ninth Annual Conference of the International Speech Communication Association},
year={2008}
}
@article{fan2016hierarchical,
title={Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing},
author={Fan, Deliang and Sharad, Mrigank and Sengupta, Abhronil and Roy, Kaushik},
journal={IEEE transactions on neural networks and learning systems},
volume={27},
number={9},
pages={1907--1919},
year={2016},
publisher={IEEE}
}
@inproceedings{lavin2015evaluating,
title={Evaluating Real-Time Anomaly Detection Algorithms--The Numenta Anomaly Benchmark},
author={Lavin, Alexander and Ahmad, Subutai},
booktitle={Machine Learning and Applications (ICMLA), 2015 IEEE 14th International Conference on},
pages={38--44},
year={2015},
organization={IEEE}
}
@article{ahmad2016real,
title={Real-time anomaly detection for streaming analytics},
author={Ahmad, Subutai and Purdy, Scott},
journal={arXiv preprint arXiv:1607.02480},
year={2016}
}
@techreport{bonhoff2008using,
title={Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity},
author={Bonhoff, Gerod M},
year={2008},
institution={AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT}
}
@article{putic2017hierarchical,
title={Hierarchical Temporal Memory on the Automata Processor},
author={Putic, Mateja and Varshneya, AJ and Stan, Mircea R},
journal={IEEE Micro},
volume={37},
number={1},
pages={52--59},
year={2017},
publisher={IEEE}
}
@inproceedings{ganapathy2017characterizing,
title={On characterizing near-threshold SRAM failures in FinFET technology},
author={Ganapathy, Shrikanth and Kalamatianos, John and Kasprak, Keith and Raasch, Steven},
booktitle={Proceedings of the 54th Annual Design Automation Conference 2017},
pages={53},
year={2017},
organization={ACM}
}
@article{mitra2005robust,
title={Robust system design with built-in soft-error resilience},
author={Mitra, Subhasish and Seifert, Norbert and Zhang, Ming and Shi, Quan and Kim, Kee Sup},
journal={Computer},
volume={38},
number={2},
pages={43--52},
year={2005},
publisher={IEEE}
}
@inproceedings{blome2006cost,
title={Cost-efficient soft error protection for embedded microprocessors},
author={Blome, Jason A and Gupta, Shantanu and Feng, Shuguang and Mahlke, Scott},
booktitle={Proceedings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems},
pages={421--431},
year={2006},
organization={ACM}
}
@article{cheng2017tolerating,
title={Tolerating soft errors in processor cores using CLEAR (cross-layer exploration for architecting resilience)},
author={Cheng, Eric and Mirkhani, Shahrzad and Szafaryn, Lukasz G and Cher, Chen-Yong and Cho, Hyungmin and Skadron, Kevin and Stan, Mircea R and Lilja, Klas and Abraham, Jacob A and Bose, Pradip and others},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
year={2017},
publisher={IEEE}
}
@book{keckler2009multicore,
title={Multicore processors and systems},
author={Keckler, Stephen W and Hofstee, H Peter and Olukotun, Kunle},
year={2009},
publisher={Springer}
}
@inproceedings{parashar2013triggered,
title={Triggered instructions: a control paradigm for spatially-programmed architectures},
author={Parashar, Angshuman and Pellauer, Michael and Adler, Michael and Ahsan, Bushra and Crago, Neal and Lustig, Daniel and Pavlov, Vladimir and Zhai, Antonia and Gambhir, Mohit and Jaleel, Aamer and others},
booktitle={ACM SIGARCH Computer Architecture News},
volume={41},
number={3},
pages={142--153},
year={2013},
organization={ACM}
}
@misc{parloff2016why,
title = {Why Deep Learning Is Suddenly Changing Your Life},
author = {Roger Parloff},
url = {http://fortune.com/ai-artificial-intelligence-deep-machine-learning/},
language = {en},
urldate = {2018-04-21},
journal = {Fortune},
}
@inproceedings{koster2017flexpoint,
title={Flexpoint: An adaptive numerical format for efficient training of deep neural networks},
author={K{\"o}ster, Urs and Webb, Tristan and Wang, Xin and Nassar, Marcel and Bansal, Arjun K and Constable, William and Elibol, Oguz and Gray, Scott and Hall, Stewart and Hornof, Luke and others},
booktitle={Advances in Neural Information Processing Systems},
pages={1742--1752},
year={2017}
}
@article{snir2014addressing,
title={Addressing failures in exascale computing},
author={Snir, Marc and Wisniewski, Robert W and Abraham, Jacob A and Adve, Sarita V and Bagchi, Saurabh and Balaji, Pavan and Belak, Jim and Bose, Pradip and Cappello, Franck and Carlson, Bill and others},
journal={The International Journal of High Performance Computing Applications},
volume={28},
number={2},
pages={129--173},
year={2014},
publisher={Sage Publications Sage UK: London, England}
}
@misc{cheng2017maximum,
Author = {Chih-Hong Cheng and Georg Nührenberg and Harald Ruess},
Title = {Maximum Resilience of Artificial Neural Networks},
Year = {2017},
Eprint = {arXiv:1705.01040},
}
@misc{dodge2017quality,
Author = {Samuel Dodge and Lina Karam},
Title = {Quality Resilient Deep Neural Networks},
Year = {2017},
Eprint = {arXiv:1703.08119},
}
@misc{szegedy2013intriguiing,
Author = {Christian Szegedy and Wojciech Zaremba and Ilya Sutskever and Joan Bruna and Dumitru Erhan and Ian Goodfellow and Rob Fergus},
Title = {Intriguing properties of neural networks},
Year = {2013},
Eprint = {arXiv:1312.6199},
}
@misc{zhou2017classification,
Author = {Yiren Zhou and Sibo Song and Ngai-Man Cheung},
Title = {On Classification of Distorted Images with Deep Convolutional Neural Networks},
Year = {2017},
Eprint = {arXiv:1701.01924},
}
@article{srivastava2014dropout,
title={Dropout: A simple way to prevent neural networks from overfitting},
author={Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
journal={The Journal of Machine Learning Research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
@article{lin2013network,
title={Network in network},
author={Lin, Min and Chen, Qiang and Yan, Shuicheng},
journal={arXiv preprint arXiv:1312.4400},
year={2013}
}
@inproceedings{denton2014exploiting,
title={Exploiting linear structure within convolutional networks for efficient evaluation},
author={Denton, Emily L and Zaremba, Wojciech and Bruna, Joan and LeCun, Yann and Fergus, Rob},
booktitle={Advances in neural information processing systems},
pages={1269--1277},
year={2014}
}
@article{gong2014compressing,
title={Compressing deep convolutional networks using vector quantization},
author={Gong, Yunchao and Liu, Liu and Yang, Ming and Bourdev, Lubomir},
journal={arXiv preprint arXiv:1412.6115},
year={2014}
}
@inproceedings{du2014leveraging,
title={Leveraging the error resilience of machine-learning applications for designing highly energy efficient accelerators},
author={Du, Zidong and Lingamneni, Avinash and Chen, Yunji and Palem, Krishna and Temam, Olivier and Wu, Chengyong},
booktitle={Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific},
pages={201--206},
year={2014},
organization={IEEE}
}
@inproceedings{sankaralingam2003exploiting,
title={Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture},
author={Sankaralingam, Karthikeyan and Nagarajan, Ramadass and Liu, Haiming and Kim, Changkyu and Huh, Jaehyuk and Burger, Doug and Keckler, Stephen W and Moore, Charles R},
booktitle={ACM SIGARCH Computer Architecture News},
volume={31},
number={2},
pages={422--433},
year={2003},
organization={ACM}
}
@article{taylor2002raw,
title={The raw microprocessor: A computational fabric for software circuits and general-purpose programs},
author={Taylor, Michael Bedford and Kim, Jason and Miller, Jason and Wentzlaff, David and Ghodrat, Fae and Greenwald, Ben and Hoffman, Henry and Johnson, Paul and Lee, Jae-Wook and Lee, Walter and others},
journal={IEEE micro},
volume={22},
number={2},
pages={25--35},
year={2002},
publisher={IEEE}
}
@misc{molchanov2016pruning,
Author = {Pavlo Molchanov and Stephen Tyree and Tero Karras and Timo Aila and Jan Kautz},
Title = {Pruning Convolutional Neural Networks for Resource Efficient Inference},
Year = {2016},
Eprint = {arXiv:1611.06440},
}
@inproceedings{yu2017scalpel,
title={Scalpel: Customizing dnn pruning to the underlying hardware parallelism},
author={Yu, Jiecao and Lukefahr, Andrew and Palframan, David and Dasika, Ganesh and Das, Reetuparna and Mahlke, Scott},
booktitle={Proceedings of the 44th Annual International Symposium on Computer Architecture},
pages={548--560},
year={2017},
organization={ACM}
}
@misc{knowles2017designing,
title = {Simon {Knowles}: {Designing} {Processors} for {Intelligence}},
shorttitle = {Simon {Knowles}},
url = {https://www.youtube.com/watch?v=7XtBZ4Hsi_M},
urldate = {2018-04-22},
author = {{UC Berkeley EECS Events}}
}
@article{kung1982wavefront,
title={Wavefront array processor: Language, architecture, and applications},
author={Kung, Sun-Yuan and Rao, Bhaskar and others},
journal={IEEE Transactions on Computers},
volume={100},
number={11},
pages={1054--1066},
year={1982},
publisher={IEEE}
}
@article{kung1984supercomputing,