Skip to content

Latest commit

 

History

History
28 lines (20 loc) · 2.92 KB

README.md

File metadata and controls

28 lines (20 loc) · 2.92 KB

Ea-GANs

This repository is written by myself Mathieu Charbonnel for testing Ea GANS on a private dataset, as well as variants of gea-GAN and dea-GAN. The code is based on the implementation of Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis (IEEE TMI) by Biting Yu, Luping Zhou, Lei Wang, Yinghuan Shi, Jurgen Fripp, and Pierrick Bourgeat. Their code is based on pix2pix. Here are the commands that you could find useful to run if you find a dataset to use (preprocessing steps are detailed in my report):

./pipeline_mask_FLAIR_patients_v2.sh <data_directory>/MscProject/brain_data/t2_masked_data <data_directory>/MscProject/brain_data/t2_masked_data/BATCH3_20.02.19_nifti/DIGr_P044/04.10.17 20171004143249_t2_tirm_tra_dark-fluid_fs_3 nii

applying a mask: fslmaths 'image_1.nii.gz' -mas 'mask.nii.gz' 'saving_location.nii.gz'

TRAIN and TEST

python train.py --dataroot <data_directory>/MscProject/brain_data/standard_preprocessed/pairing --name example_gEaGAN --model gea_gan --which_model_netG unet_128 --which_direction AtoB --lambda_A 1.0 --dataset_mode aligned --use_dropout --batchSize 4 --niter 100 --niter_decay 100 --lambda_sobel 1.0 --fineSize 128 --lr 0.00002 --beta1 0.65 python test.py --dataroot <data_directory>/MscProject/brain_data/standard_preprocessed/pairing --name example_gEaGAN --model gea_gan --which_direction AtoB --dataset_mode aligned --use_dropout

TIME predictor python train_time.py --dataroot <data_directory>/MscProject/brain_data/standard_preprocessed/pairing --name time_pred --model time_predictor --which_direction AtoB --lambda_A 1.0 --dataset_mode aligned_time --use_dropout --batchSize 1 --niter 100 --niter_decay 100 --lambda_sobel 1.0 --fineSize 128 --lr 0.00002 --beta1 0.65 (--gpu_ids -1)

GEA TPN python train.py --dataroot <data_directory>/MscProject/brain_data/standard_preprocessed/pairing --name gea_TPN_test --TPN time_pred --model gea_TPN --which_model_netG unet_128 --which_direction AtoB --lambda_A 1.0 --dataset_mode aligned_TPN --use_dropout --batchSize 1 --lambda_sobel 1.0 --fineSize 128 --lr 0.00002 --beta1 0.65 --save_epoch_freq 10 --gamma 0.1 --niter 600 --niter_decay 200 python test.py --dataroot <data_directory>/MscProject/brain_data/standard_preprocessed/pairing --name gea_TPN --model gea_TPN --which_direction AtoB --dataset_mode aligned_TPN --fineSize 128 --which_model_netG unet_128 --TPN time_pred EVAL python mc_eval.py '<data_directory>/MscProject/Ea-GANs-time/results/gea_TPN2/test_latest/images'

DM GEA python train.py --dataroot <data_directory>/MscProject/brain_data/DM_preprocessed/pairing --name gea_DM_example --model gea_DM --which_direction AtoB --lambda_A 1.0 --dataset_mode aligned_DM --use_dropout --batchSize 1 --lambda_sobel 1.0 --fineSize 128 --lr 0.00002 --beta1 0.65 --save_epoch_freq 10 --gamma 0.1 --niter 100 --niter_decay 100