-
Notifications
You must be signed in to change notification settings - Fork 9
/
code.qmd
65 lines (40 loc) · 5.65 KB
/
code.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
title: "Code"
toc: true
---
![](figs/linocut_mountaintops.png)
This page contains code snippets for algorithms in the book, sometimes in multiple languages. Click on the language icons to view and download the code.
#### Chapter 1 - The Bayesics
#### Chapter 2 - One-parameter models
#### Chapter 3 - Multi-parameter models
#### Chapter 4 - Priors
#### Chapter 5 - Regression
#### Chapter 6 - Prediction and Decision making
#### Chapter 7 - Normal posterior approximation
#### Chapter 8 - Classification
#### Chapter 9 - Gibbs sampling
| | | | |
|-------------------|------------------|------------------|------------------|
| Gibbs sampling - multivariate normal | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling from a multivariate normal - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/e10f75403abbd992e28d6427777fbb03) | | |
| Gibbs sampling - mixture of normals | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling - mixture of normals - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/92e82ca32b6c5334983eef3fe95b8045) | [![R](figs/Rlogo.png){alt="R" fig-alt="Gibbs sampling - mixture of normals - R" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/27187865da917ba7fe29170c03a367c6) | |
| Gibbs sampling - mixture of Poissons | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling - mixture of Poissons - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/d71fbadc3a431109e82f1f843a09fa7b) | | |
| Gibbs sampling - probit regression | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling - probit regression - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/09eeda1231e85e59ea3b22d22be1e181) | | |
| Gibbs sampling - logistic regression | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling - logistic regression - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/05df2e1657b336e049de683b394a6577) | | |
| Gibbs sampling - autoregressive processes | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling - AR processes - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/aed206ee2f6166b75b4361628615f7a1) | | |
: {.striped }
#### Chapter 10 - Markov Chain Monte Carlo simulation
#### Chapter 11 - Variational inference
#### Chapter 12 - Regularization
| | | | |
|-------------------|------------------|------------------|------------------|
| Gibbs sampling - linear regression with L2-regularization | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling from a multivariate normal - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/2edd03a1f7b98f41ac46035077854965) | [![R](figs/Rlogo.png){alt="R" fig-alt="Gibbs sampling from a multivariate normal - R" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/b1a5afc8417a3cbd40374050f64cc8fe) | |
: {.striped }
#### Chapter 13 - Mixture models and Bayesian nonparametrics
#### Chapter 14 - Model comparison and variable selection
#### Chapter 15 - Gaussian processes
#### Chapter 16 - Interaction models
#### Chapter 17 - Dynamic models and sequential inference
| | | | |
|-------------------|------------------|------------------|------------------|
| Kalman filter and parameter estimation | [![Julia](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling from a multivariate normal - Julia" fig-align="left" width="20"}](https://gist.github.com/mattiasvillani/4a461587c037d257d7099b7675aa0ddf) | | |
: {.striped }