-
Notifications
You must be signed in to change notification settings - Fork 9
/
notebooks.qmd
71 lines (43 loc) · 5.88 KB
/
notebooks.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
title: "Notebooks"
---
![](figs/linocoumixturemountain.png)
This page contains a set of notebooks in Julia, R and Python for some of the data analyses presented in the book.
#### Chapter 1 - The Bayesics
#### Chapter 2 - One-parameter models
+--------------------------------------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------+
| Bernoulli model for spam data | [![](figs/julialogo.svg){fig-align="left" width="20"}](notebooks/SpamBern/BernBeta.jl) | [![](figs/Rlogo.png){fig-align="left" width="20" height="16"}](notebooks/SpamBern/SpamBernR.ipynb) | |
+--------------------------------------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------+
| Normal model for internet download speed data | | [![](figs/Rlogo.png){alt="Julia" fig-align="left" width="20" height="16"}](notebooks/DownloadSpeedNormal/DownloadSpeedNormalR.ipynb) | |
+--------------------------------------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------+
| Poisson for number of eBay bidders | | [![](figs/Rlogo.png){alt="Julia" fig-align="left" width="20" height="16"}](notebooks/ebayPoissonOneParam/eBayPoissonR.ipynb) | [![](figs/pythonlogo.svg){alt="Julia" fig-align="left" width="20"}](notebooks/ebayPoissonOneParam/eBayPoissonPython.ipynb) |
+--------------------------------------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------+
: {.striped}
#### Chapter 3 - Multi-parameter models
+--------------------------------------------------------+---------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------+---+
| Multinomial model for survey data | [![](figs/julialogo.svg){alt="figs/julialogo.svg" width="20"}](notebooks/SurveyMultinomial/multinom.jl) | [![](figs/Rlogo.png){alt="figs/Rlogo.png" width="20" height="16"}](notebooks/SurveyMultinomial/multinomial.Rmd) | |
+--------------------------------------------------------+---------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------+---+
: {.striped}
####
#### Chapter 4 - Priors
#### Chapter 5 - Regression
#### Chapter 6 - Prediction and Decision making
#### Chapter 7 - Normal posterior approximation
#### Chapter 8 - Classification
+----------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------+-------+
| Logistic regression for spam data | | [![](figs/Rlogo.png){alt="figs/Rlogo.png" width="20" height="16"}](notebooks/SpamLogisticReg/SpamLogisticReg.Rmd) | |
+----------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------+-------+
: {.striped}
#### Chapter 9 - Gibbs sampling
#### Chapter 10 - Markov Chain Monte Carlo simulation
#### Chapter 11 - Variational inference
#### Chapter 12 - Regularization
#### Chapter 13 - Mixture models and Bayesian nonparametrics
#### Chapter 14 - Model comparison and variable selection
#### Chapter 15 - Gaussian processes
#### Chapter 16 - Interaction models
#### Chapter 17 - Dynamic models and sequential inference
+------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+---------+
| Filtering and smoothing of the Nile river data | [![](figs/julialogo.svg){alt="Julia" fig-alt="Gibbs sampling from a multivariate normal - Julia" fig-align="left" width="20"}](notebooks/KalmanFilteringSmoothing/R_KalmanFilteringSmoothing.ipynb) | | |
+------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+---------+
: {.striped}