-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdetmodel.h
1491 lines (1278 loc) · 60.2 KB
/
detmodel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. See the enclosed file LICENSE for a copy or if
* that was not distributed with this file, You can obtain one at
* http://mozilla.org/MPL/2.0/.
*
* Copyright 2017 Max H. Gerlach
*
* */
/*
* detmodel.h
*
* Created on: Feb 18, 2013
* Author: gerlach
*/
#ifndef DETMODEL_H_
#define DETMODEL_H_
#include <functional>
#include <utility>
#include <memory> // unique_ptr
#include <algorithm> // minmax_element
#include <vector>
#include <tuple>
#include <armadillo>
#include <cassert>
#include <type_traits> // std::is_same
#include "tools.h"
#include "toolsdebug.h"
#include "rngwrapper.h"
#include "checkarray.h"
#include "dataserieswritersucc.h"
#include "detmodelparams.h"
#include "detmodelloggingparams.h"
#include "observable.h"
#include "udv.h"
#include "metadata.h"
#include "timing.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wshadow"
#include "boost/serialization/base_object.hpp"
#pragma GCC diagnostic pop
#include "boost_serialize_array.h"
#include "boost_serialize_armadillo.h"
typedef double num;
typedef std::complex<double> cpx;
typedef arma::Col<num> VecNum;
typedef arma::Mat<num> MatNum;
typedef arma::Cube<num> CubeNum;
typedef arma::Col<int32_t> VecInt;
typedef arma::Mat<int32_t> MatInt;
typedef arma::Col<uint32_t> VecUint;
typedef arma::Mat<uint32_t> MatUint;
typedef arma::Col<cpx> VecCpx;
typedef arma::Mat<cpx> MatCpx;
typedef arma::SpMat<num> SpMatNum;
typedef std::tuple<MatNum,MatNum,MatNum,MatNum> MatNum4;
typedef UdV<num> UdVnum;
// The previous function template, which was to be specialized
// explicitly, led to errors that were hard to understand and fix.
// To avoid this we do not use any generic template at all and
// just *require* that model implementations are accompanied by
// a function
// void createReplica(std::unique_ptr<Model>& replica_out,
// RngWrapper& rng, ModelParams pars)
// // This template should not be used. Provide explicit specializations
// // for each implementation of a model
// template<class Model, class Params = ModelParams<Model> >
// std::unique_ptr<Model> createReplica(RngWrapper& rng, Params pars) {
// BOOST_MPL_ASSERT(( not_defined<Model> ));
// pars.check();
// return std::unique_ptr<Model>(new Model(rng, pars));
// }
// Compute min{1, exp(-Delta), the acceptance probability for a
// replica exchange in parallel tempering
// --
// currently only specialized for DetSDW -- it may be that this will
// have to be generalized and redefined for other models where the
// relevant terms in the action are not simply
// parameter * action_contribution
template<class Model>
num get_replica_exchange_probability(
num parameter_1, num action_contribution_1,
num parameter_2, num action_contribution_2)
{
(void)parameter_1;
(void)parameter_2;
(void)action_contribution_1;
(void)action_contribution_2;
BOOST_MPL_ASSERT(( not_defined<Model> ));
return 0.0;
}
//base class for a model to be simulated by determinantal quantum Monte Carlo
//
//purely abstract base class
class DetModel {
public:
virtual ~DetModel() { };
virtual uint32_t getSystemN() const = 0;
//Create a MetadataMap describing the parameters of the
//simulated model
virtual MetadataMap prepareModelMetadataMap() const = 0;
//get values of observables normalized by system size, the structures returned
//contain references to the current values measured by this DetModel.
//These values are valid after a sweep, in which measurements where taken
virtual std::vector<ScalarObservable> getScalarObservables() = 0;
virtual std::vector<VectorObservable> getVectorObservables() = 0;
virtual std::vector<KeyValueObservable> getKeyValueObservables() = 0;
//perform a sweep updating the auxiliary field with costly re-computations
//of Green functions from scratch
//if takeMeasurements==true: perform measurements of all observables
virtual void sweepSimple(bool takeMeasurements) = 0;
//the same to be called during thermalization, may do the same or iteratively
//adjust parameters
virtual void sweepSimpleThermalization() = 0;
//perform a sweep as suggested in the text by Assaad with stable computation
//of Green functions, alternate between sweeping up and down in imaginary time.
//Will give equal-time and time-displaced Green functions.
//if takeMeasurements==true: perform measurements of all observables
virtual void sweep(bool takeMeasurements) = 0;
//the same to be called during thermalization, may do the same or iteratively
//adjust parameters
virtual void sweepThermalization() = 0;
//notify DetModel that thermalization has finished
//do nothing by default
virtual void thermalizationOver() {
}
public:
// For serialization. To be called by DetQMC methods
template<class Archive>
void saveContents(Archive &) {
}
template<class Archive>
void loadContents(Archive &) {
}
};
//GreenComponents is the number of independent (block-diagonal)
//sectors of the Green's function, e.g. in the S=1/2-Hubbard model it
//is 2 for spin up and spin down
//
//ValueType can be a complex number if the Green function is not purely real
//
//if TimeDisplaced==true: generate code that evaluates time-displaced green
//functions in the sweep
//
//This provides template functions like sweep_skeleton<>() that expect callable template
//arguments for routines that compute B-matrices etc. A derived class that provides
//them should instantiate them and call them in their implementations of virtual
//functions like sweep()
template<uint32_t GreenComponents, typename ValueType = num, bool TimeDisplaced = false>
class DetModelGC: public DetModel {
protected:
template<class ModelParams>
DetModelGC(const ModelParams& pars, uint32_t greenComponentSize,
const DetModelLoggingParams& loggingParams = DetModelLoggingParams());
public:
virtual ~DetModelGC()
{ }
//get values of observables normalized by system size, the structures returned
//contain references to the current values measured by DetHubbard.
virtual std::vector<ScalarObservable> getScalarObservables();
virtual std::vector<VectorObservable> getVectorObservables();
virtual std::vector<KeyValueObservable> getKeyValueObservables();
//perform a sweep updating the auxiliary field with costly re-computations
//of Green functions from scratch
//
// if takeMeasurements == true : perform observable measurements
//
// Callable_GC_k2_k1: take arguments green component, timeslices k2 > k1,
// and give the corresponding B-matrix
// Callable_UpdateInSlice_k: argument timeslice k, update fields for this timeslice
// Callable_init: no arguments, init observable measurements for this sweep
// Callable_measure_k: argument timeselice k = 1,...,m, take measurement data for timeslice k
// Callable_finish: no arguments, finalize observable measurements for this sweep
template<class Callable_GC_k2_k1, class Callable_UpdateInSlice_k,
class Callable_init, class Callable_measure_k,
class Callable_finish >
void sweepSimple_skeleton(bool takeMeasurements,
Callable_GC_k2_k1 computeBmat,
Callable_UpdateInSlice_k updateInSlice,
Callable_init initMeasurement,
Callable_measure_k measure, Callable_finish finishMeasurement);
//the same to be called during thermalization, may do the same or iteratively
//adjust parameters, but does not take any measurements ever
template<class Callable_GC_k2_k1, class Callable_UpdateInSlice_k>
void sweepSimpleThermalization_skeleton(Callable_GC_k2_k1 computeBmat,
Callable_UpdateInSlice_k updateInSlice);
//perform a sweep as suggested in the text by Assaad with stable computation
//of Green functions, alternate between sweeping up and down in imaginary time.
// /* at some point Will give equal-time and time-displaced Green functions if TimeDisplace == ture */.
//if takeMeasurements == true : perform observable measurements
//
//*_Callable_GC_mat_k2_k1: take arguments green-component, some matrix,
// time slices k2 > k1
// -> return left/right product of matrix with Bmat or Bmat-inverse
// useful if a checkerboard-breakup is performed
//Callable_UpdateInSlice_k: argument timeslice k, update fields for this timeslice
//Callable_init: no arguments, init observable measurements for this sweep
//Callable_measure_k: argument timeselice k, take measurement data for timeslice k
//Callable_finish: no arguments, finalize observable measurements for this sweep
//
//optional:
// Callable_GlobalUpdate: no arguments, this is called before each sweep-down
// and may be used to provide a global update encompassing all
// imaginary time slices
// By default: do nothing
//optional:
// Callable_GreenConsistency:
// Arguments: const Mat& g1, const Mat& g2, SweepDirection cursweepdir.
// Perform some sort of consistency check, comparing the two matrices,
// also be informed about whether we are sweeping up or down.
// By default: do nothing
template<class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1,
class c_Callable_GC_mat_k2_k1, class d_Callable_GC_mat_k2_k1,
class Callable_UpdateInSlice_k,
class Callable_init, class Callable_measure_k, class Callable_finish,
class Callable_GlobalUpdate = VoidNoOp,
class Callable_GreenConsistency = VoidNoOp>
void sweep_skeleton(bool takeMeasurements,
a_Callable_GC_mat_k2_k1 leftMultiplyBmat,
b_Callable_GC_mat_k2_k1 rightMultiplyBmat,
c_Callable_GC_mat_k2_k1 leftMultiplyBmatInv,
d_Callable_GC_mat_k2_k1 rightMultiplyBmatInv,
Callable_UpdateInSlice_k updateInSlice,
Callable_init initMeasurement, Callable_measure_k measure,
Callable_finish finishMeasurement,
Callable_GlobalUpdate globalUpdate = VoidNoOp(),
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
//the same to be called during thermalization, may do the same or iteratively
//adjust parameters, but does not take any measurements ever
template<class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1,
class c_Callable_GC_mat_k2_k1, class d_Callable_GC_mat_k2_k1,
class Callable_UpdateInSlice_k,
class Callable_GlobalUpdate = VoidNoOp,
class Callable_GreenConsistency = VoidNoOp>
void sweepThermalization_skeleton(
a_Callable_GC_mat_k2_k1 leftMultiplyBmat,
b_Callable_GC_mat_k2_k1 rightMultiplyBmat,
c_Callable_GC_mat_k2_k1 leftMultiplyBmatInv,
d_Callable_GC_mat_k2_k1 rightMultiplyBmatInv,
Callable_UpdateInSlice_k updateInSlice,
Callable_GlobalUpdate globalUpdate = VoidNoOp(),
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
protected:
typedef arma::Mat<ValueType> MatV;
typedef arma::Col<ValueType> VecV;
typedef arma::Cube<ValueType> CubeV;
typedef UdV<ValueType> UdVV;
typedef std::tuple<MatV,MatV,MatV,MatV> MatV4;
// //update the auxiliary field and the green function in the single timeslice
// virtual void updateInSlice(uint32_t timeslice) = 0;
// //separate function to be called during thermalization, by default just do the
// //same; a derived class may override this to introduce an adaptive behavior
// virtual void updateInSliceThermalization(uint32_t timeslice) {
// updateInSlice(timeslice);
// }
//Given B(beta, tau) = V_l d_l U_l and B(tau, 0) = U_r d_r V_r
//calculate a tuple of four NxN matrices (a,b,c,d) with
// a = G(0), b = -(1-G(0))*B^(-1)(tau,0), c = B(tau,0)*G(0), d = G(tau)
//b is the backward time-displaced Green function; c the forward time-
//displaced Green function; d is the equal-time Green function
//todo: get rid of this MatNum4 business
MatV4 greenFromUdV_timedisplaced(const UdVV& UdV_l, const UdVV& UdV_r) const;
//use a faster method that does not yield information about the time-displaced
//Green functions.
// Uses B(beta, tau) = U_l d_l V_l and B(tau, 0) = U_r d_r V_r,
// computes G(tau) = [Id + B(tau,0).B(beta,tau)]^{-1}
// = [Id + U_r d_r V_r U_l d_l V_l]^{-1}
// = (V_t_L V_t_x) D_x^{-1} (U_R U_x)^{dagger}
// and stores the singular values of G^{-1} [their product yields
// the absolute value of the inverse determinant of G]
void greenFromUdV(MatV& green_out, VecNum& green_inv_sv, const UdVV& UdV_l, const UdVV& UdV_r) const;
//The following is useful to compute G(\beta) = [1 + B(\beta, 0)]^{-1}
void greenFromEye_and_UdV(MatV& green_out, VecNum& green_inv_sv, const UdVV& UdV_r) const;
//compute Green function from UdV-decomposed matrices L/R
//for a single timeslice and update the member variables green --
//and if desired -- greenFwd and greenBwd.
//Also updates green_inv_sv.
void updateGreenFunctionUdV(uint32_t gc, const UdVV& UdV_L, const UdVV& UdV_R);
void updateGreenFunction_Eye_UdV(uint32_t gc, const UdVV& UdV_R);
//for each greenComponent call a function with the greenComponent as a parameter
template<typename Callable>
void for_each_gc(Callable func) {
for (uint32_t gc = 0; gc < GreenComponents; ++gc) {
func(gc);
}
}
// //call in a derived class:
// // Callable_GC_k2_k1: take arguments green component, timeslices k2 > k1,
// // and give the corresponding B-matrix
// //
// //This will setup the UdV storage used to compute Green's functions from scratch
// //in the following sweep-down and also compute the Green's function G(\beta)
// template<class Callable_GC_k2_k1>
// void setupUdVStorage_and_calculateGreen_skeleton(Callable_GC_k2_k1 computeBmat);
//call in a derived class:
//Callable_GC_mat_k2_k1: take arguments green-component, some matrix,
// time slices k2 > k1
// -> return left product of matrix with Bmat: Bmat(k2,k1) * matrix
//
//This will setup the UdV storage used to compute Green's functions from scratch
//in the following sweep-down and also compute the Green's function G(\beta)
template<class Callable_GC_mat_k2_k1>
void setupUdVStorage_and_calculateGreen_skeleton(Callable_GC_mat_k2_k1 leftMultiplyBmat);
// this is the same, but computes the Green's function G(k \dtau)
// at an arbitrary timeslice k. Note that this leaves the UdV
// storage etc in a stage that is unsuitable for a continued
// sweep. Use this only for consistency checks etc and restore
// the proper state before continuing the regular program flow.
template<class Callable_GC_mat_k2_k1>
void setupUdVStorage_and_calculateGreen_forTimeslice_skeleton(uint32_t timeslice,
Callable_GC_mat_k2_k1 leftMultiplyBmat);
//helpers for sweep_skeleton(), sweepThermalization_skeleton():
//
//Callable_GC_mat_k2_k1: take arguments green-component, some matrix,
// time slices k2 > k1
// -> return left/right product of matrix with Bmat or Bmat-inverse
//optional:
// Callable_GreenConsistency:
// Arguments: const Mat& g1, const Mat& g2, SweepDirection cursweepdir.
// Perform some sort of consistency check, comparing the two matrices,
// also be informed about whether we are sweeping up or down.
// By default: do nothing
template<class Callable_GC_mat_k2_k1,
class Callable_GreenConsistency = VoidNoOp>
void advanceDownGreen(Callable_GC_mat_k2_k1 rightMultiplyBmat,
uint32_t l, uint32_t gc,
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
template<class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1>
void wrapDownGreen(a_Callable_GC_mat_k2_k1 leftMultiplyBmatInv,
b_Callable_GC_mat_k2_k1 rightMultiplyBmat,
uint32_t k, uint32_t gc);
template<class Callable_GC_mat_k2_k1,
class Callable_GreenConsistency = VoidNoOp>
void advanceUpGreen(Callable_GC_mat_k2_k1 leftMultiplyBmat,
uint32_t l, uint32_t gc,
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
// template<class Callable_GC_mat_k2_k1>
// void advanceUpUpdateStorage(Callable_GC_mat_k2_k1 leftMultiplyBmat,
// uint32_t l, uint32_t gc);
template<class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1>
void wrapUpGreen(a_Callable_GC_mat_k2_k1 leftMultiplyBmat,
b_Callable_GC_mat_k2_k1 rightMultiplyBmatInv,
uint32_t k, uint32_t gc);
//these receive as a template parameter the function to call for updates in a slice,
//as well as B-Mat multiplicators like above
template <class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1,
class CallableUpdateInSlice,
class Callable_init, class Callable_measure_k, class Callable_finish,
class Callable_GreenConsistency = VoidNoOp>
void sweepUp(bool takeMeasurements,
a_Callable_GC_mat_k2_k1 leftMultiplyBmat,
b_Callable_GC_mat_k2_k1 rightMultiplyBmatInv,
CallableUpdateInSlice funcUpdateInSlice,
Callable_init initMeasurement, Callable_measure_k measure,
Callable_finish finishMeasurement,
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
template <class a_Callable_GC_mat_k2_k1, class b_Callable_GC_mat_k2_k1,
class CallableUpdateInSlice,
class Callable_init, class Callable_measure_k, class Callable_finish,
class Callable_GreenConsistency = VoidNoOp>
void sweepDown(bool takeMeasurements,
a_Callable_GC_mat_k2_k1 leftMultiplyBmatInv,
b_Callable_GC_mat_k2_k1 rightMultiplyBmat,
CallableUpdateInSlice funcUpdateInSlice,
Callable_init initMeasurement, Callable_measure_k measure,
Callable_finish finishMeasurement,
Callable_GreenConsistency greenConsistencyCheck = VoidNoOp());
// This method is called after each sweep.
// A derived class, which implements the model, may overload it to check
// its internal state for consistency. An exception should be thrown if
// it fails.
virtual void consistencyCheck() {
// default: do nothing
}
//Green component size, e.g. sz == N for the Hubbard model
const uint32_t sz;
//some simulation parameters are already relevant for member functions implemented
//in this base class, the rest will only be used in derived classes
const bool timedisplaced;
const num beta; //inverse temperature
const uint32_t m; //number of imaginary time discretization steps (time slices) beta*m=dtau
const uint32_t s; //maximum interval between time slices where the Green-function is calculated from scratch
const uint32_t n; //number of time slices where the Green-function is calculated from scratch == ceil(m/s)
const num dtau; // beta / m
// this struct contains parameters related to logging that should
// be done in this class
DetModelLoggingParams loggingParams;
std::unique_ptr<DoubleVectorWriterSuccessive> svLogging, svMaxLogging, svMinLogging;
// //equal-imaginary-time and time-displaced Green's functions
// //slices indexed k=0..m correspond to time slices at dtau*k,
// //which are then indexed by sites in row and column.
// //Most code, however, only uses timeslices k >= 1 ! Don't rely on g*.slice(0)
// //being valid.
// //The Green functions for k=0 are conceptually equal to those for k=m.
// checkarray<CubeV, GreenComponents> green;
// checkarray<CubeV, GreenComponents> greenFwd;
// checkarray<CubeV, GreenComponents> greenBwd;
// During the sweep: hold the matrix elements of the equal-time Green's function for the
// current timeslice
checkarray<MatV, GreenComponents> green;
uint32_t currentTimeslice; //currently green is valid for this timeslice
// This stores the singular values of G^{-1} (assuming that det(G) > 0). This is only valid after
// updateGreenFunction[_Eye_]UdV
checkarray<VecNum, GreenComponents> green_inv_sv;
//The UdV-instances in UdVStorage will not move around after setup, so storing
//the (rather big) objects in the vector is fine.
//However, for instance for deciding on doing a global update we need the possibility
//to swap the whole vector of UdV's. For this reason: handle the whole container over
//a unique_ptr.
//Remember that to recover the decomposed matrices: m == U * diag(d) * trans(V)
//The conjugate-transpose still needs to be taken.
const UdVV eye_UdV;
const MatV eye_gc;
std::unique_ptr<checkarray<std::vector<UdVV>, GreenComponents>> UdVStorage;
enum class SweepDirection: int {Up = 1, Down = -1};
SweepDirection lastSweepDir;
//observable handling -- these contain information about observables (such as their names)
//as well as reference to their current value, which will be shared with simulation management
//in a different class. The values referenced there are to be updated here in the replica class.
std::vector<ScalarObservable> obsScalar;
std::vector<VectorObservable> obsVector;
std::vector<KeyValueObservable> obsKeyValue;
public:
// serialization by DetQMC::serializeContents
template<class Archive>
void saveContents(Archive &ar) {
DetModel::saveContents(ar); //base class
//the following commented lines are for contents we no longer
//serialize as they can be reconstructed from the field configuration
//easily with setupUdVstorage and a sweep
// ar & green & greenFwd & greenBwd;
// ar & UdVStorage;
// ar & lastSweepDir;
}
template<class Archive>
void loadContents(Archive &ar) {
DetModel::loadContents(ar); //base class
//UdV-storage, green, green_inv_sv, greenFwd, greenBwd still need to be recast into a valid state
//by a derived class!
//TODO: this is a mess!
}
};
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class ModelParams>
DetModelGC<GC,V,TimeDisplaced>::DetModelGC(const ModelParams& pars, uint32_t greenComponentSize,
const DetModelLoggingParams& loggingParams_ /* default argument */) :
sz(greenComponentSize),
timedisplaced(TimeDisplaced),
beta(pars.beta), m(pars.m), s(pars.s),
n(uint32_t(std::ceil(double(m) / s))),
dtau(pars.dtau),
loggingParams(loggingParams_),
svLogging(), svMaxLogging(), svMinLogging(),
green(), //greenFwd(), greenBwd(),
currentTimeslice(),
green_inv_sv(),
eye_UdV(sz), eye_gc(arma::eye<MatV>(sz, sz)),
UdVStorage(new checkarray<std::vector<UdVV>, GC>),
lastSweepDir(SweepDirection::Up),
obsScalar(), obsVector(), obsKeyValue()
{
//init Green's functions with zeros
for(uint32_t gc = 0; gc < GC; ++gc) {
green[gc].zeros(greenComponentSize, greenComponentSize);
green_inv_sv[gc].zeros(greenComponentSize);
// if (TimeDisplaced) {
// greenFwd[gc].zeros(greenComponentSize, greenComponentSize, m+1);
// greenBwd[gc].zeros(greenComponentSize, greenComponentSize, m+1);
// }
}
if (loggingParams.logSV) {
svLogging = std::unique_ptr<DoubleVectorWriterSuccessive>(
new DoubleVectorWriterSuccessive(
loggingParams.logSV_filename,
false // append to file = false: always start a new file for this
)
);
svLogging->addHeaderText("Attention: this file is recreated and the log restarted for each run of the program. It is not continued if the simulation is resumed from a saved state.");
svLogging->addHeaderText("Here we log the logarithmic range of the singular values: log(max sv) - log(min sv), each time the (inverse) Green's function is computed from the singular values.");
svLogging->writeHeader();
svMaxLogging = std::unique_ptr<DoubleVectorWriterSuccessive>(
new DoubleVectorWriterSuccessive(
loggingParams.logSV_max_filename,
false // append to file = false: always start a new file for this
)
);
svMaxLogging->addHeaderText("Attention: this file is recreated and the log restarted for each run of the program. It is not continued if the simulation is resumed from a saved state.");
svMaxLogging->addHeaderText("Here we log the max logarithmic singular values: log(max sv), each time the (inverse) Green's function is computed from the singular values.");
svMaxLogging->writeHeader();
svMinLogging = std::unique_ptr<DoubleVectorWriterSuccessive>(
new DoubleVectorWriterSuccessive(
loggingParams.logSV_min_filename,
false // append to file = false: always start a new file for this
)
);
svMinLogging->addHeaderText("Attention: this file is recreated and the log restarted for each run of the program. It is not continued if the simulation is resumed from a saved state.");
svMinLogging->addHeaderText("Here we log the min logarithmic singular values: log(min sv), each time the (inverse) Green's function is computed from the singular values.");
svMinLogging->writeHeader();
}
// // Default functors for multiplication with B-matrices
// for_each_gc( [this](uint32_t gc) {
// leftMultiplyBmat[gc] = [this, gc](const MatV A, uint32_t k2, uint32_t k1) -> MatV {
// return computeBmat[gc](k2, k1) * A;
// };
// rightMultiplyBmat[gc] = [this, gc](const MatV A, uint32_t k2, uint32_t k1) -> MatV {
// return A * computeBmat[gc](k2, k1);
// };
// leftMultiplyBmatInv[gc] = [this, gc](const MatV A, uint32_t k2, uint32_t k1) -> MatV {
// return arma::inv(computeBmat[gc](k2, k1)) * A;
// };
// rightMultiplyBmatInv[gc] = [this, gc](const MatV A, uint32_t k2, uint32_t k1) -> MatV {
// return A * arma::inv(computeBmat[gc](k2, k1));
// };
// } );
}
template<uint32_t GC, typename V, bool TimeDisplaced>
std::vector<ScalarObservable> DetModelGC<GC,V,TimeDisplaced>::getScalarObservables() {
return obsScalar;
}
template<uint32_t GC, typename V, bool TimeDisplaced>
std::vector<VectorObservable> DetModelGC<GC,V,TimeDisplaced>::getVectorObservables() {
return obsVector;
}
template<uint32_t GC, typename V, bool TimeDisplaced>
std::vector<KeyValueObservable> DetModelGC<GC,V,TimeDisplaced>::getKeyValueObservables() {
return obsKeyValue;
}
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class Callable_GC_mat_k2_k1>
void DetModelGC<GC,V,TimeDisplaced>::setupUdVStorage_and_calculateGreen_forTimeslice_skeleton(
uint32_t timeslice, Callable_GC_mat_k2_k1 leftMultiplyBmat) {
// handle the timeslice == beta case separately
if (timeslice == m) {
setupUdVStorage_and_calculateGreen_skeleton(leftMultiplyBmat);
return;
}
timing.start("setupUdVStorage");
auto setup = [this, timeslice, &leftMultiplyBmat](uint32_t gc) -> uint32_t {
std::vector<UdVV>& storage = (*UdVStorage)[gc];
storage = std::vector<UdVV>(n + 1);
uint32_t lk = uint32_t(std::floor(num(timeslice) / s));
uint32_t k_lkp1 = ((lk < n - 1) ? (s*(lk+1)) : (m));
// std::cout << "timeslice: " << timeslice << " lk: " << lk << " k_lkp1: " << k_lkp1 << "\n";
// std::cout << "(" << k_lkp1 << ", " << timeslice << ")\n";
udvDecompose(storage[0], leftMultiplyBmat(gc, eye_gc, k_lkp1, timeslice));
uint32_t storageCounter = 0;
for (uint32_t l = lk + 1; l <= n - 1; ++l) {
// std::cout << "l = " << l << ", storageCounter = " << storageCounter << "\n";
const MatV& U_l = storage[storageCounter].U;
const VecNum& d_l = storage[storageCounter].d;
const MatV& V_t_l = storage[storageCounter].V_t;
const uint32_t k_l = s*l;
const uint32_t k_lp1 = ((l < n - 1) ? (s*(l+1)) : (m));
// std::cout << "(" << k_lp1 << ", " << k_l << ")\n";
MatV B_lp1_times_U_l = leftMultiplyBmat(gc, U_l, k_lp1, k_l);
udvDecompose<V>(storage[storageCounter+1], B_lp1_times_U_l * arma::diagmat(d_l));
storage[storageCounter+1].V_t = V_t_l * storage[storageCounter+1].V_t;
++storageCounter;
}
uint32_t target = ( (lk * s == timeslice) ? lk - 1 : lk );
// std::cout << "target = (lk * s == timeslice) ? lk - 1 : lk ... "
// << target << " = ( (" << lk << " == " << s << " * " << timeslice << ") ? "
// << lk - 1 << " : " << lk << " );\n";
for (uint32_t l = 0; l <= target; ++l) {
// std::cout << "l = " << l << ", storageCounter = " << storageCounter << "\n";
const MatV& U_l = storage[storageCounter].U;
const VecNum& d_l = storage[storageCounter].d;
const MatV& V_t_l = storage[storageCounter].V_t;
const uint32_t k_l = s*l;
const uint32_t k_lp1 = ((l < lk) ? (s*(l+1)) : (timeslice));
// std::cout << "(" << k_lp1 << ", " << k_l << ")\n";
MatV B_lp1_times_U_l = leftMultiplyBmat(gc, U_l, k_lp1, k_l);
udvDecompose<V>(storage[storageCounter+1], B_lp1_times_U_l * arma::diagmat(d_l));
storage[storageCounter+1].V_t = V_t_l * storage[storageCounter+1].V_t;
++storageCounter;
}
return storageCounter; // return the highest index in the storage
};
for (uint32_t gc = 0; gc < GC; ++gc) {
uint32_t index = setup(gc);
updateGreenFunction_Eye_UdV(gc, (*UdVStorage)[gc][index]);
}
timing.stop("setupUdVStorage");
}
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class Callable_GC_mat_k2_k1>
void DetModelGC<GC,V,TimeDisplaced>::setupUdVStorage_and_calculateGreen_skeleton(
Callable_GC_mat_k2_k1 leftMultiplyBmat) {
timing.start("setupUdVStorage");
auto setup = [this, &leftMultiplyBmat](uint32_t gc) {
std::vector<UdVV>& storage = (*UdVStorage)[gc];
storage = std::vector<UdVV>(n + 1);
storage[0] = eye_UdV;
// storage[1] = udvDecompose(computeBmat(gc, s, 0));
udvDecompose(storage[1], leftMultiplyBmat(gc, eye_gc, s, 0));
for (uint32_t l = 1; l <= n - 1; ++l) {
const MatV& U_l = storage[l].U;
const VecNum& d_l = storage[l].d;
const MatV& V_t_l = storage[l].V_t;
const uint32_t k_l = s*l;
const uint32_t k_lp1 = ((l < n - 1) ? (s*(l+1)) : (m));
// MatV B_lp1_times_U_l = computeBmat(gc, k_lp1, k_l) * U_l;
MatV B_lp1_times_U_l = leftMultiplyBmat(gc, U_l, k_lp1, k_l);
udvDecompose<V>(storage[l+1], B_lp1_times_U_l * arma::diagmat(d_l));
storage[l+1].V_t = V_t_l * storage[l+1].V_t;
}
};
for_each_gc(setup);
for (uint32_t gc = 0; gc < GC; ++gc) {
updateGreenFunction_Eye_UdV(gc, (*UdVStorage)[gc][n]);
}
currentTimeslice = m;
lastSweepDir = SweepDirection::Up;
timing.stop("setupUdVStorage");
}
//warning: the thermalization version below is almost a copy of this -- without measurements
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class Callable_GC_k2_k1, class Callable_UpdateInSlice_k,
class Callable_init, class Callable_measure_k, class Callable_finish>
void DetModelGC<GC,V,TimeDisplaced>::sweepSimple_skeleton(
bool takeMeasurements,
Callable_GC_k2_k1 computeBmat, Callable_UpdateInSlice_k updateInSlice,
Callable_init initMeasurement,
Callable_measure_k measure, Callable_finish finishMeasurement) {
if (takeMeasurements) {
initMeasurement();
}
for (uint32_t timeslice = 1; timeslice <= m; ++timeslice) {
for_each_gc( [this, timeslice, &computeBmat](uint32_t gc) {
green[gc] = arma::inv(arma::eye(sz,sz) + computeBmat(gc, timeslice, 0) *
computeBmat(gc, m, timeslice));
});
updateInSlice(timeslice);
if (takeMeasurements) {
measure(timeslice);
}
}
if (takeMeasurements) {
finishMeasurement();
}
consistencyCheck();
}
//warning: this is almost a copy of sweepSimple() defined above
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class Callable_GC_k2_k1, class Callable_UpdateInSlice_k>
void DetModelGC<GC,V,TimeDisplaced>::sweepSimpleThermalization_skeleton(
Callable_GC_k2_k1 computeBmat, Callable_UpdateInSlice_k updateInSliceThermalization) {
for (uint32_t timeslice = 1; timeslice <= m; ++timeslice) {
for_each_gc( [this, timeslice, &computeBmat](uint32_t gc) {
green[gc] =
arma::inv(arma::eye(sz,sz) + computeBmat(gc, timeslice, 0) *
computeBmat(gc, m, timeslice));
});
updateInSliceThermalization(timeslice);
}
}
//use a faster method that does not yield information about the time-displaced
//Green functions.
// Uses B(beta, tau) = U_l d_l V_l and B(tau, 0) = U_r d_r V_r,
// computes G(tau) = [Id + B(tau,0).B(beta,tau)]^{-1}
// = [Id + U_r d_r V_r U_l d_l V_l]^{-1}
// = (V_t_L V_t_x) D_x^{-1} (U_R U_x)^{dagger}
template<uint32_t GC, typename V, bool TimeDisplaced>
void DetModelGC<GC,V,TimeDisplaced>::greenFromUdV(
MatV& green_out,
VecNum& green_inv_sv,
const UdVV& UdV_l,
const UdVV& UdV_r) const {
timing.start("greenFromUdV");
const MatV& U_l = UdV_l.U;
const VecNum& d_l = UdV_l.d;
const MatV& V_t_l = UdV_l.V_t;
const MatV& U_r = UdV_r.U;
const VecNum& d_r = UdV_r.d;
const MatV& V_t_r = UdV_r.V_t;
using arma::diagmat; using arma::trans;
MatV VU_rl_product = trans(V_t_r) * U_l;
MatV UtVt_rl_product = trans(U_r) * V_t_l;
// here we get just the singular values of G^{-1}
MatV U_temp, V_t_temp;
udvDecompose<V>(U_temp, green_inv_sv, V_t_temp,
UtVt_rl_product +
diagmat(d_r) * VU_rl_product * diagmat(d_l)
);
if (loggingParams.logSV) {
auto min_max_pair = std::minmax_element(green_inv_sv.begin(), green_inv_sv.end());
num log_min_sv = std::log(*min_max_pair.first);
num log_max_sv = std::log(*min_max_pair.second);
// for(auto& i : green_inv_sv)
// std::cout << i << ' ';
// std::cout << '\n';
svLogging->writeData( log_max_sv - log_min_sv );
svMinLogging->writeData ( log_min_sv );
svMaxLogging->writeData ( log_max_sv );
}
MatV Vt_product = V_t_l * V_t_temp;
MatV U_product = U_r * U_temp;
green_out = Vt_product *
diagmat(1.0 / green_inv_sv) *
trans(U_product);
timing.stop("greenFromUdV");
}
template<uint32_t GC, typename V, bool TimeDisplaced>
void DetModelGC<GC,V,TimeDisplaced>::greenFromEye_and_UdV(
MatV& green_out,
VecNum& green_inv_sv,
const UdVV& UdV_r) const {
timing.start("greenFromUdV");
//Here we consider the special case U_l*d_l*V_t_l.t() = 1
const MatV& U_r = UdV_r.U;
const VecNum& d_r = UdV_r.d;
const MatV& V_t_r = UdV_r.V_t;
using arma::diagmat; using arma::trans;
// here we get just the singular values of G^{-1}
MatV U_temp, V_t_temp;
udvDecompose<V>(U_temp, green_inv_sv, V_t_temp,
trans(U_r) * V_t_r + diagmat(d_r)
);
if (loggingParams.logSV) {
auto min_max_pair = std::minmax_element(green_inv_sv.begin(), green_inv_sv.end());
num log_min_sv = std::log(*min_max_pair.first);
num log_max_sv = std::log(*min_max_pair.second);
svLogging->writeData( log_max_sv - log_min_sv );
svMinLogging->writeData ( log_min_sv );
svMaxLogging->writeData ( log_max_sv );
}
MatV V_t_product = V_t_r * V_t_temp;
MatV U_product = U_r * U_temp;
green_out = V_t_product *
diagmat(1.0 / green_inv_sv) *
trans(U_product);
timing.stop("greenFromUdV");
}
template<uint32_t GC, typename V, bool TimeDisplaced>
typename DetModelGC<GC,V,TimeDisplaced>::MatV4 DetModelGC<GC,V,TimeDisplaced>::greenFromUdV_timedisplaced(
const UdVV& UdV_l, const UdVV& UdV_r) const {
timing.start("greenFromUdV_timedisplaced");
//Ul vs Vl to be compatible with labeling in the notes
const MatV& Ul = UdV_l.V; //!
const VecNum& dl = UdV_l.d;
const MatV& Vl = UdV_l.U; //!
const MatV& Ur = UdV_r.U;
const VecNum& dr = UdV_r.d;
const MatV& Vr = UdV_r.V;
uint32_t sz_ = Ul.n_rows;
//submatrix view helpers for 2*N x 2*N matrices
auto upleft = [sz_](MatV& m) {
return m.submat(0,0, sz_-1,sz_-1);
};
auto upright = [sz_](MatV& m) {
return m.submat(0,sz_, sz_-1,2*sz_-1);
};
auto downleft = [sz_](MatV& m) {
return m.submat(sz_,0, 2*sz_-1,sz_-1);
};
auto downright = [sz_](MatV& m) {
return m.submat(sz_,sz_, 2*sz_-1,2*sz_-1);
};
MatV temp(2*sz_,2*sz_);
upleft(temp) = arma::inv(Vr * Vl);
upright(temp) = arma::diagmat(dl);
downleft(temp) = arma::diagmat(-dr);
downright(temp) = arma::inv(Ul * Ur);
UdVV tempUdV = udvDecompose<V>(temp);
MatV left(2*sz_,2*sz_);
upleft(left) = arma::inv(Vr);
upright(left).zeros();
downleft(left).zeros();
downright(left) = arma::inv(Ul);
MatV right(2*sz_,2*sz_);
upleft(right) = arma::inv(Vl);
upright(right).zeros();
downleft(right).zeros();
downright(right) = arma::inv(Ur);
MatV result = (left * arma::inv(tempUdV.V)) * arma::diagmat(1.0 / tempUdV.d)
* (arma::inv(tempUdV.U) * right);
timing.stop("greenFromUdV_timedisplaced");
return MatV4(upleft(result), upright(result),
downleft(result), downright(result));
}
template<uint32_t GC, typename V, bool TimeDisplaced>
void DetModelGC<GC,V,TimeDisplaced>::updateGreenFunctionUdV(
uint32_t gc, const UdVV& UdV_L, const UdVV& UdV_R)
{
if (TimeDisplaced) {
// std::tie(std::ignore, greenBwd[gc].slice(targetSlice),
// greenFwd[gc].slice(targetSlice), green[gc].slice(targetSlice))
// = greenFromUdV_timedisplaced(UdV_L, UdV_R);
} else {
greenFromUdV(green[gc], green_inv_sv[gc], UdV_L, UdV_R);
}
}
template<uint32_t GC, typename V, bool TimeDisplaced>
void DetModelGC<GC,V,TimeDisplaced>::updateGreenFunction_Eye_UdV(
uint32_t gc, const UdVV& UdV_R) {
if (TimeDisplaced) {
// no-op
} else {
greenFromEye_and_UdV(green[gc], green_inv_sv[gc], UdV_R);
}
}
//compute the green function in timeslice s*(l-1) from scratch with the help
//of the B-matrices computed before in the last up-sweep
//
//preconditions: storage[l] contains B(beta, l*s*dtau)
// storage[l - 1] contains B((l-1)*s*dtau, 0)
//
//postconditions: storage[l - 1] contains B(beta, (l-1)*s*dtau)
// green is G((l-1)*s*dtau)
template<uint32_t GC, typename V, bool TimeDisplaced>
template<class Callable_GC_mat_k2_k1,
class Callable_GreenConsistency>
void DetModelGC<GC,V,TimeDisplaced>::advanceDownGreen(
Callable_GC_mat_k2_k1 rightMultiplyBmat,
uint32_t l, uint32_t gc,
Callable_GreenConsistency greenConsistencyCheck)
{
timing.start("advanceDownGreen");
//This is the point where the function should be called in the
//sweep, even though we do not actually use green explicitly here.
//The sweep is now set-up in such a way, that we do one
//superfluous wrap-up step, this means the advance-functions serve
//as a refresh of the current time slice.
assert(currentTimeslice == s*(l-1));
std::vector<UdVV>& storage = (*UdVStorage)[gc];
const uint32_t k_l = ((l < n) ? (s*l) : (m));
const uint32_t k_lm1 = s*(l-1);
//UdV_L will correspond to B(beta,k_lm1*dtau)
UdVV UdV_L;
if (l < n) {
//U_l, d_l, V_l correspond to B(beta,k_l*dtau) [set in the last step]
const MatV& U_l = storage[l].U;
const VecNum& d_l = storage[l].d;
const MatV& V_t_l = storage[l].V_t;
udvDecompose<V>(UdV_L,
arma::diagmat(d_l) *
rightMultiplyBmat(gc, trans(V_t_l), k_l, k_lm1)
);
UdV_L.U = U_l * UdV_L.U;
} else {
// special case l==n, can compute UdV_L from scratch
udvDecompose<V>(UdV_L, rightMultiplyBmat(gc, eye_gc, k_l, k_lm1));
}
// //Accuracy check:
MatV g_wrapped;
if ( not std::is_same<Callable_GreenConsistency, VoidNoOp>::value ) {
g_wrapped = green[gc];
}
if (l - 1 > 0) {
//UdV_R corresponds to B(k_lm1*dtau,0) [set in last sweep]