-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
153 lines (119 loc) · 3.9 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# 0 general info ----------------------------------------------------------------------------------
title: Title of my project
authors:
- first_author
- second_author
- pi_1
- pi_2
# number of cores to utilize per node.
# never set more cores than allowed per node (usually 24 but check the hardware specs).
cores: 8
# tracks the beginning of an analysis.
# This value is preserved across all stages of the analysis.
date: "2021-02-22" # YYYY-MM-DD
# list out antibodies exactly as how they are labeled from cell ranger
# if antibodies are labeled with underscores, convert them to dashes like below.
antibody_list:
- ab-CD10
- ab-CD34
- ab-CD38
- ab-CD45RA
- ab-CD90
- ab-CD99
- ab-CD123
- ab-CD366
assembly: "hg38"
# 1 preprocessing ---------------------------------------------------------------------------------
# list the names of your samples to process.
samples2process:
- dmso
- ory
# give the analysis a name.
project_name: "my_project"
# save or don't save seurat object with cell cycle regression
cell_cycle_regression: TRUE # [TRUE, FALSE]
# See QC metrics at these percentiles.
metadataQuants:
- 0
- 0.25
- 0.5
- 0.75
- 0.95
- 1
# filtering criteria
percentMitoFilt: 15
nCountMinFilt: 2000
nCountMaxFilt: 20000
# principle components to calculate for each sample.
nPCs: 150
# principle components to utilize for each sample.
usePCs: 20
# visualize cell cycle states versus expression level of these cell cycle genes.
cc_genes:
- NASP
- USP1
- TUBB4B
- HMGB2
- PCNA
- TOP2A
- MCM6
- MKI67
# 2 integration -----------------------------------------------------------------------------------
# Set the baseline condition
baseline: "dmso"
# number of principal components to use for integrating transcriptome features. Should be <= usePCs
integration_anchor_PC: 20
# by default, the pipeline will integrate all PCs in the ADT space!
# how many neighbors (k) to use when picking anchors
k.anchor: 5
# 3 clustering- -----------------------------------------------------------------------------------
# the resolution value to cluster on per sample and save to the Seurat object.
# value should be a float between 0.1 and 2 (inclusive) with step size of 0.1
resolutions:
dmso: 0.3
ory: 0.3
integrated: 0.2
# List of genes to view gene expression in UMAP space
FeaturePlotList:
- PROCR
# - HOXA9
- CDK6
- SOX4
- MPO
- ELANE
- CAMP
- CEBPE
- LYZ
- IRF8
# - IL2RB
- JCHAIN
- HBB-BT
- CAR1
- GATA2
- VCAN
# letter casing counts! if you don't see your gene in the output, try a different casing.
# default gene list reference: https://www.biorxiv.org/content/10.1101/2020.09.14.295295v1
# select a rcolorbrewer palette for cluster colors.
# Ideally use a qualitative or diverging color scheme.
rcolorbrewer_palette: "Spectral"
# 4 Differential Testing + Ontology ---------------------------------------------------------------
# Find all DE genes for each cluster. This will take a long time.
FindAllMarkers: FALSE # [TRUE, FALSE]
# Find markers conserved in each cluster, split by a factor (e.g. identity).
FindConservedMarkers: FALSE # [TRUE, FALSE]
# Find DE genes between two identities for each cluster in the integrated object. This is quick.
FindMarkersIdent: TRUE # [TRUE, FALSE]
# all the above DE schemes follow the following configuration
FindMarkersConfig:
group1: "ory"
group2: "dmso"
grouping.var: "orig.ident"
# significance level for DE and GO
significance: 0.05
# filter genes using regex or FALSE for gene ontology. Case will be ignored. example:
# "^RPS|^RPL" will remove ribosomal S and L genes
filter_genes: FALSE
# common mistakes
# mismatch of gene casing.
# too few cells so DE breaks
# if you are experiencing DE problems, you can quickly debug by down-sampling cells in chunk3.