-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
91 lines (66 loc) · 2.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import OneHotEncoder
from utils.constants import UNIVARIATE_DATASET_NAMES_2018 as DATASET_NAMES_2018
from utils.constants import PATH_DATA
def read_all_datasets(split_val=False):
datasets_dict = {}
cur_root_dir = PATH_DATA
for dataset_name in DATASET_NAMES_2018:
root_dir_dataset = cur_root_dir + '/' + dataset_name + '/'
df_train = pd.read_csv(root_dir_dataset + dataset_name + '_TRAIN.tsv', sep='\t', header=None)
df_test = pd.read_csv(root_dir_dataset + dataset_name + '_TEST.tsv', sep='\t', header=None)
y_train = df_train.values[:, 0]
y_test = df_test.values[:, 0]
x_train = df_train.drop(columns=[0])
x_test = df_test.drop(columns=[0])
x_train.columns = range(x_train.shape[1])
x_test.columns = range(x_test.shape[1])
x_train = x_train.values
x_test = x_test.values
# znorm
std_ = x_train.std(axis=1, keepdims=True)
std_[std_ == 0] = 1.0
x_train = (x_train - x_train.mean(axis=1, keepdims=True)) / std_
std_ = x_test.std(axis=1, keepdims=True)
std_[std_ == 0] = 1.0
x_test = (x_test - x_test.mean(axis=1, keepdims=True)) / std_
datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())
return datasets_dict
def create_directory(directory_path):
if os.path.exists(directory_path):
return None
else:
try:
os.makedirs(directory_path)
except:
# in case another machine created the path meanwhile !:(
return None
return directory_path
def read_dataset(root_dir, dataset_name):
datasets_dict = {}
cur_root_dir = PATH_DATA
root_dir_dataset = cur_root_dir + '/' + dataset_name + '/'
df_train = pd.read_csv(root_dir_dataset + dataset_name + '_TRAIN.tsv', sep='\t', header=None)
df_test = pd.read_csv(root_dir_dataset + dataset_name + '_TEST.tsv', sep='\t', header=None)
y_train = df_train.values[:, 0]
y_test = df_test.values[:, 0]
x_train = df_train.drop(columns=[0])
x_test = df_test.drop(columns=[0])
x_train.columns = range(x_train.shape[1])
x_test.columns = range(x_test.shape[1])
x_train = x_train.values
x_test = x_test.values
# znorm
std_ = x_train.std(axis=1, keepdims=True)
std_[std_ == 0] = 1.0
x_train = (x_train - x_train.mean(axis=1, keepdims=True)) / std_
std_ = x_test.std(axis=1, keepdims=True)
std_[std_ == 0] = 1.0
x_test = (x_test - x_test.mean(axis=1, keepdims=True)) / std_
datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())
return datasets_dict