-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRungeKutta4thOrder_upd.py
148 lines (109 loc) · 4.65 KB
/
RungeKutta4thOrder_upd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import division
import numpy as np
import scipy.integrate as integrate
from scipy.integrate import solve_ivp
from scipy.interpolate import UnivariateSpline
import matplotlib.pyplot as plt
import math
c=299792458*100 # cm/s
def nt(z): # cm^-3
return 56*(1+z)**3
def L0(E, z, k=1, gamma=2, E_max=1.0e7):
return k*np.power(E,-gamma)*np.exp(-E/E_max)
def W(z, a=3.4 , b=-0.3 , c1=-3.5 , B=5000 , C=9 , eta=-10):
return ((1+z)**(a*eta)+((1+z)/B)**(b*eta)+((1+z)/C)**(c1*eta))**(1/eta)
def L(z,E):
return W(z)*L0(E, z)
def H(z, H0=0.678/(9.777752*3.16*1e16), OM=0.308, OL=0.692): # s^-1
return H0*np.sqrt(OM*(1.+z)**3. + OL)
def sigma(E, g, M, m): # cm^2
return (g**4/(16*np.pi))*(2*E*m)/((2*E*m-M**2)**2+((M**4*g**4)/(16*np.pi**2)))* 0.389379e-27
def dsigma(Ep, E, g, M, m): # cm^2*GeV^-1
if Ep < E:
return 0
else:
return sigma(Ep, g, M, m)*3/Ep*((E/Ep)**2+(1-(E/Ep))**2)
def dx(x, delta_x):
return (10**(x+delta_x)-10**(x-delta_x))/(2*delta_x)
def Re(E, z, g, M, m, n, eps=1.e-8):
def integrand(Ep, E, z, g, M, m, n):
return dsigma(Ep, E, g, M, m) * n
def integrator(E, z, g, M, m, n):
return integrate.quad(lambda Ep: integrand(Ep, E, z, g, M, m, n), E, np.inf, epsabs=eps, epsrel=eps)[0]
return integrator(E, z, g, M ,m, n)
def rhs_fun(E, z, g, M, m, n):
t0 = H(z)*n
t1 = L(z, E)
t2 = - c*nt(z)*sigma(E, g, M, m)*n
t3 = c*nt(z)*Re(E, z, g, M, m, n, eps=1.e-3)
# t3 = 0.0
return (t0+t1+t2+t3)/((1.0+z)*H(z))
def rhs_fun_alt(E, z, g, M, m, n):
Ep = (1.0+z)
t1 = (1.0+z)*L(z, Ep)
t2 = - c*nt(z)*sigma(Ep, g, M, m)*n
# t3 = c*nt(z)*Re(E, z, g, M, m, n)
t3 = 0.0
return (t1+t2+t3)/(-(1. + z)*H(z))
def Runge_Kutta(E, h, g, M, m):
n_new = np.zeros(E.size)
n_previous = np.zeros(E.size)
# k1 = np.zeros(E.size)
# k2 = np.zeros(E.size)
# k3 = np.zeros(E.size)
# k4 = np.zeros(E.size)
z = 6-h
while z >= 0:
for i in np.arange(E.size):
# k1[i] = h/((1 + z)*H(z))*(H(z)*n_previous[i] + L(z, E[i]) \
# - c*nt(z)*sigma(E[i], g, M, m)*n_previous[i]) #+ c*nt(z)*Re(E[i], z, g, M, m, n_previous[i])
# k2[i] = h/((1 + (z + 0.5*h))*H(z + 0.5*h))*(H(z + 0.5*h)*(n_previous[i] + 0.5*k1[i]) + L(z + 0.5*h, E[i]) \
# - c*nt(z + 0.5*h)*sigma(E[i], g, M, m)*(n_previous[i] + 0.5*k1[i])) # \
# # + c*nt(z + 0.5*h)*Re(E[i], z + 0.5*h, g, M, m, (n_previous[i] + 0.5*k1[i]))
# k3[i] = h/((1 + (z + 0.5*h))*H(z + 0.5*h))*(H(z + 0.5*h)*(n_previous[i] + 0.5*k2[i]) + L(z + 0.5*h, E[i]) \
# - c*nt(z + 0.5*h)*sigma(E[i], g, M, m)*(n_previous[i] + 0.5*k2[i])) # \
# # + c*nt(z + 0.5*h) * Re(E[i], z + 0.5*h, g, M, m, (n_previous[i] + 0.5*k2[i]))
# k4[i] = h/((1 + (z + h))*H(z + h))*(H(z + h)*(n_previous[i] + k3[i])+ L(z + h, E[i]) \
# - c*nt(z + h)*sigma(E[i], g, M, m)*(n_previous[i] + k3[i])) # \
# # + c*nt(z + h)* Re(E[i], z + h, g, M, m, (n_previous[i] + k3[i]))
k1 = h* rhs_fun(E[i], z, g, M, m, n_previous[i])
k2 = h* rhs_fun(E[i], z+0.5*h, g, M, m, n_previous[i])
k3 = h* rhs_fun(E[i], z+0.5*h, g, M, m, n_previous[i]+0.5*k2)
k4 = h* rhs_fun(E[i], z+h, g, M, m, n_previous[i]+k3)
# n_new[i] = n_previous[i] + 1/6*k1[i] + 1/3*k2[i] + 1/3*k3[i] + 1/6*k4[i]
n_new[i] = n_previous[i] + k1/6. + k2/3. + k3/3. + k4/6.
# if math.isnan(n_new[i]) and z>0 :
# print(z, E[i], n_new[i])
n_previous = np.copy(n_new)
z = z-h
return n_new
x_min = 3
x_max = 8
npts = 500
#test=np.linspace(x_min, x_max, npts)
#test=np.append(test, [ 5.698970005])
#test=np.sort(test)
test=np.power(10, np.linspace(x_min, x_max, npts))
test=np.append(test, [5e3, 4.5e4, 5e5, 5e7 ])
test=np.sort(test)
flux = c/(4*np.pi)*test*test * Runge_Kutta(test, 1e-5, 0.03, 0.01, 1e-10)
renorm_flux = max(flux)
flux = flux/renorm_flux
print(flux)
plt.rcParams['xtick.labelsize']=26
plt.rcParams['ytick.labelsize']=26
plt.rcParams['legend.fontsize']=18
plt.rcParams['legend.borderpad']=0.4
plt.rcParams['axes.labelpad']=10
plt.rcParams['ps.fonttype']=42
plt.rcParams['pdf.fonttype']=42
fig = plt.figure(figsize=[9,9])
ax = fig.add_subplot(1,1,1)
ax.plot(test, flux, label='B: g = 0.03, M = 0.01 ')
ax.set_xlabel(r'Neutrino energy $E$ [GeV]', fontsize=25)
ax.set_ylabel(r'Neutrino flux [$10^{-8}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]', fontsize=25)
plt.xscale('log')
#ax.set_xlim((10.**3., 10.**8.))
#ax.set_ylim((0.0, 2.0))
plt.legend(loc='upper right')
plt.savefig('RungeKutta4thOrder_500p.png', bbox_inches='tight', dpi=300)