-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathcachefunc.py
164 lines (129 loc) · 5.16 KB
/
cachefunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# From http://code.activestate.com/recipes/498245/
import collections
import functools
from itertools import ifilterfalse
from heapq import nsmallest
from operator import itemgetter
class Counter(dict):
'Mapping where default values are zero'
def __missing__(self, key):
return 0
def lru_cache(maxsize=100):
'''Least-recently-used cache decorator.
Arguments to the cached function must be hashable.
Cache performance statistics stored in f.hits and f.misses.
Clear the cache with f.clear().
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
'''
maxqueue = maxsize * 10
def decorating_function(user_function,
len=len, iter=iter, tuple=tuple, sorted=sorted, KeyError=KeyError):
cache = {} # mapping of args to results
queue = collections.deque() # order that keys have been used
refcount = Counter() # times each key is in the queue
sentinel = object() # marker for looping around the queue
kwd_mark = object() # separate positional and keyword args
# lookup optimizations (ugly but fast)
queue_append, queue_popleft = queue.append, queue.popleft
queue_appendleft, queue_pop = queue.appendleft, queue.pop
@functools.wraps(user_function)
def wrapper(*args, **kwds):
# cache key records both positional and keyword args
key = args
if kwds:
key += (kwd_mark,) + tuple(sorted(kwds.items()))
# record recent use of this key
queue_append(key)
refcount[key] += 1
# get cache entry or compute if not found
try:
result = cache[key]
wrapper.hits += 1
except KeyError:
result = user_function(*args, **kwds)
cache[key] = result
wrapper.misses += 1
# purge least recently used cache entry
if len(cache) > maxsize:
key = queue_popleft()
refcount[key] -= 1
while refcount[key]:
key = queue_popleft()
refcount[key] -= 1
del cache[key], refcount[key]
# periodically compact the queue by eliminating duplicate keys
# while preserving order of most recent access
if len(queue) > maxqueue:
refcount.clear()
queue_appendleft(sentinel)
for key in ifilterfalse(refcount.__contains__,
iter(queue_pop, sentinel)):
queue_appendleft(key)
refcount[key] = 1
return result
def clear():
cache.clear()
queue.clear()
refcount.clear()
wrapper.hits = wrapper.misses = 0
wrapper.hits = wrapper.misses = 0
wrapper.clear = clear
return wrapper
return decorating_function
def lfu_cache(maxsize=100):
'''Least-frequenty-used cache decorator.
Arguments to the cached function must be hashable.
Cache performance statistics stored in f.hits and f.misses.
Clear the cache with f.clear().
http://en.wikipedia.org/wiki/Least_Frequently_Used
'''
def decorating_function(user_function):
cache = {} # mapping of args to results
use_count = Counter() # times each key has been accessed
kwd_mark = object() # separate positional and keyword args
@functools.wraps(user_function)
def wrapper(*args, **kwds):
key = args
if kwds:
key += (kwd_mark,) + tuple(sorted(kwds.items()))
use_count[key] += 1
# get cache entry or compute if not found
try:
result = cache[key]
wrapper.hits += 1
except KeyError:
result = user_function(*args, **kwds)
cache[key] = result
wrapper.misses += 1
# purge least frequently used cache entry
if len(cache) > maxsize:
for key, _ in nsmallest(maxsize // 10,
use_count.iteritems(),
key=itemgetter(1)):
del cache[key], use_count[key]
return result
def clear():
cache.clear()
use_count.clear()
wrapper.hits = wrapper.misses = 0
wrapper.hits = wrapper.misses = 0
wrapper.clear = clear
return wrapper
return decorating_function
if __name__ == '__main__':
@lru_cache(maxsize=20)
def f_lru(x, y):
return 3 * x + y
domain = range(5)
from random import choice
for i in range(1000):
r = f_lru(choice(domain), choice(domain))
print(f_lru.hits, f_lru.misses)
@lfu_cache(maxsize=20)
def f_lfu(x, y):
return 3 * x + y
domain = range(5)
from random import choice
for i in range(1000):
r = f_lfu(choice(domain), choice(domain))
print(f_lfu.hits, f_lfu.misses)