diff --git a/vizro-core/src/vizro/actions/_actions_utils.py b/vizro-core/src/vizro/actions/_actions_utils.py index fb2dbf184..39e9b163e 100644 --- a/vizro-core/src/vizro/actions/_actions_utils.py +++ b/vizro-core/src/vizro/actions/_actions_utils.py @@ -282,12 +282,15 @@ def _get_modified_page_figures( **_get_parametrized_config(ctds_parameter=ctds_parameter, target=target, data_frame=False), ) + # AM comment: please check this comment I added! for target in control_targets: ctd_filter = [item for item in ctds_filter if item["id"] == model_manager[target].selector.id] # This only covers the case of cross-page actions when Filter in an output, but is not an input of the action. current_value = ctd_filter[0]["value"] if ctd_filter else None + # target_to_data_frame contains all targets, including some which might not be relevant for the filter in + # question. We filter to use just the relevant targets in Filter.__call__. outputs[target] = model_manager[target](target_to_data_frame=target_to_data_frame, current_value=current_value) return outputs diff --git a/vizro-core/src/vizro/models/_components/form/dropdown.py b/vizro-core/src/vizro/models/_components/form/dropdown.py index af22b71f4..a1c71bb13 100755 --- a/vizro-core/src/vizro/models/_components/form/dropdown.py +++ b/vizro-core/src/vizro/models/_components/form/dropdown.py @@ -88,10 +88,12 @@ def validate_multi(cls, multi, values): raise ValueError("Please set multi=True if providing a list of default values.") return multi + # AM comment: please remove build_static and change into __call__ in all places unless you think there's + # a good reason not to do so. def __call__(self, options): - return self._build_static(options) - - def _build_static(self, options): + # AM comment: this is the main confusing thing about the current approach I think: every time we run + # __call__ we override the value set below, which sounds wrong because we say that we never change the value. + # From what I remember this is a workaround for the Dash bug? Maybe add a comment explaining this. full_options, default_value = get_options_and_default(options=options, multi=self.multi) option_height = _calculate_option_height(full_options) @@ -114,13 +116,17 @@ def _build_dynamic_placeholder(self): # Setting self.value is kind of Dropdown pre_build method. It sets self.value only the first time if it's None. # We cannot create pre_build for the Dropdown because it has to be called after vm.Filter.pre_build, but nothing # guarantees that. We can call Filter.selector.pre_build() from the Filter.pre_build() method if we decide that. + # TODO: move this to pre_build once we have better control of the ordering. if self.value is None: - self.value = get_options_and_default(self.options, self.multi)[1] + _, default_value = get_options_and_default(self.options, self.multi) + self.value = default_value # TODO-NEXT: Replace this with the "universal Vizro placeholder" component. return html.Div( children=[ dbc.Label(self.title, html_for=self.id) if self.title else None, + # AM question: why do we want opacity: 0? If we don't want it to appear on screen then normally we do + # this with visibility or display. dmc.DateRangePicker( id=self.id, value=self.value, persistence=True, persistence_type="session", style={"opacity": 0} ), @@ -129,4 +135,4 @@ def _build_dynamic_placeholder(self): @_log_call def build(self): - return self._build_dynamic_placeholder() if self._dynamic else self._build_static(self.options) + return self._build_dynamic_placeholder() if self._dynamic else self.__call__(self.options) diff --git a/vizro-core/src/vizro/models/_controls/filter.py b/vizro-core/src/vizro/models/_controls/filter.py index 8920dce34..b2051bf3c 100644 --- a/vizro-core/src/vizro/models/_controls/filter.py +++ b/vizro-core/src/vizro/models/_controls/filter.py @@ -148,6 +148,7 @@ def pre_build(self): # 2. Propagate values from the model_manager and relax the limitation of requiring argument default values. # 3. Skip the pre-build and do everything in the build method (if possible). # Find more about the mentioned limitation at: https://github.com/mckinsey/vizro/pull/879/files#r1846609956 + # Even if the solution changes for dynamic data, static data should still use {} as the arguments here. multi_data_source_name_load_kwargs: list[tuple[DataSourceName, dict[str, Any]]] = [ (model_manager[target]["data_frame"], {}) for target in proposed_targets ] @@ -170,11 +171,12 @@ def pre_build(self): ) # Check if the filter is dynamic. Dynamic filter means that the filter is updated when the page is refreshed - # which causes that "options" for categorical or "min" and "max" for numerical/temporal selectors are updated. - # The filter is dynamic if mentioned attributes ("options"/"min"/"max") are not explicitly provided and if the - # filter targets at least one figure that uses the dynamic data source. + # which causes "options" for categorical or "min" and "max" for numerical/temporal selectors to be updated. + # The filter is dynamic iff mentioned attributes ("options"/"min"/"max") are not explicitly provided and + # filter targets at least one figure that uses dynamic data source. Note that min or max = 0 are Falsey values + # but should still count as manually set. if isinstance(self.selector, DYNAMIC_SELECTORS) and ( - not getattr(self.selector, "options", None) + not getattr(self.selector, "options", []) and getattr(self.selector, "min", None) is None and getattr(self.selector, "max", None) is None ): @@ -269,6 +271,12 @@ def _get_min_max(targeted_data: pd.DataFrame, current_value=None) -> tuple[float _max = targeted_data.max(axis=None) # Convert to datetime if the column is datetime64 + # AM question: I think this could be simplified: + # * column type is already stored in _column_type and validated in __call__ with validate_column_type. Hence + # we can just do if instance(self.selector, SELECTORS["temporal"] + # * why do we need to do this type conversion at all? When we set min/max for datepicker in pre_build we don't + # do any type + # conversions. if targeted_data.apply(is_datetime64_any_dtype).all(): _min = pd.to_datetime(_min) _max = pd.to_datetime(_max) @@ -280,6 +288,7 @@ def _get_min_max(targeted_data: pd.DataFrame, current_value=None) -> tuple[float # Use item() to convert to convert scalar from numpy to Python type. This isn't needed during pre_build because # pydantic will coerce the type, but it is necessary in __call__ where we don't update model field values # and instead just pass straight to the Dash component. + # AM QUESTION: why could AttributeError be raised here? with suppress(AttributeError): _min = _min.item() with suppress(AttributeError): @@ -294,20 +303,15 @@ def _get_min_max(targeted_data: pd.DataFrame, current_value=None) -> tuple[float @staticmethod def _get_options(targeted_data: pd.DataFrame, current_value=None) -> list[Any]: - # Use tolist() to convert to convert scalar from numpy to Python type. This isn't needed during pre_build - # because pydantic will coerce the type, but it is necessary in __call__ where we don't update model field - # values and instead just pass straight to the Dash component. # The dropna() isn't strictly required here but will be in future pandas versions when the behavior of stack # changes. See https://pandas.pydata.org/docs/whatsnew/v2.1.0.html#whatsnew-210-enhancements-new-stack. - # Also setting the dtype for the current_value_series to the dtype of the targeted_data_series to ensure it - # works when it's empty. See: https://pandas.pydata.org/docs/whatsnew/v2.1.0.html#other-deprecations + options = set(targeted_data.stack().dropna()) # noqa: PD013 - # Remove ALL_OPTION from the string or list of currently selected value for the categorical filters. - current_value = [] if current_value in (None, ALL_OPTION) else current_value - if isinstance(current_value, list) and ALL_OPTION in current_value: - current_value.remove(ALL_OPTION) + # AM comment: I refactored this function to work analogously to _get_min_max. + # Completely untested though so please do check!! + if current_value is not None: + current_value = set(current_value) if isinstance(current_value, list) else {current_value} + options = options | current_value - {ALL_OPTION} - targeted_data_series = targeted_data.stack().dropna() # noqa: PD013 - current_value_series = pd.Series(current_value).astype(targeted_data_series.dtypes) + return sorted(options) - return sorted(pd.concat([targeted_data_series, current_value_series]).unique())