-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapplyTask2Classifier.m
218 lines (200 loc) · 5.81 KB
/
applyTask2Classifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
% Apply the classifier to task 2's test data
% Chin-Chia Michael Yeh 05/28/2016
%
% applyTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum)
% Input:
% dataPath: path to task 2's test data (string)
% classPath: path to the output directory (string)
% dicNum: number of dictionary element for sparse coding (scalar)
% spletLen: shaplet length (scalar)
% spletNum: number of shapelet (scalar)
%
function applyTask2Classifier(dataPath, classPath, dicNum, spletLen, spletNum)
%% check if the prediction is already done
fnameOut = sprintf('dn%d__sl%d__sn%d__task2.txt', dicNum, spletLen, spletNum);
fnameOut = fullfile(classPath, fnameOut);
if exist(fnameOut, 'file')
return
end
%% initialization for parfor
fprintf('Initialize for parfor ... \n');
tTemp = tic();
workerNum = 4;
if isempty(which('parpool'))
if matlabpool('size') <= 0 %#ok<*DPOOL>
matlabpool(workerNum);
elseif matlabpool('size')~= workerNum
matlabpool('close');
matlabpool(workerNum);
end
else
parProfile = gcp('nocreate');
if isempty(gcp('nocreate'))
parpool(workerNum);
elseif parProfile.NumWorkers ~= workerNum
delete(gcp('nocreate'));
parpool(workerNum);
end
end
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% load classifier
fnameClass = sprintf('dn%d__sl%d__sn%d.mat', dicNum, spletLen, spletNum);
fnameClass = fullfile(classPath, fnameClass);
dataRSLen = [];
dataSCLen = [];
splet = [];
dic = [];
svmModelRS = [];
svmModelSC = [];
featMean = [];
featStd = [];
load(fnameClass);
%% load data
fprintf('Loading data ... ');
tTemp = tic();
info = hdf5info(dataPath);
dataOrg = hdf5read(info.GroupHierarchy.Datasets(1));
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% organize data
fprintf('Organizing data ... ');
tTemp = tic();
dataDim = size(dataOrg, 1);
dataLen = size(dataOrg, 2);
dataNum = size(dataOrg, 3);
dataOrg2 = cell(dataDim, 1);
for i = 1:dataDim
dataOrg2{i} = squeeze(dataOrg(i, :, :))';
end
dataRS = cell(dataNum, 1);
dataSC = cell(dataNum, 1);
for i = 1:dataNum
dataRS{i} = zeros(dataDim, dataLen);
for k = 1:dataDim
dataRS{i}(k, :) = dataOrg2{k}(i, :);
end
dataRS{i} = [dataRS{i}, repmat(dataRS{i}(:, end), 1, 50)];
dataSC{i} = normalizeData(dataRS{i});
end
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% compute prediction curve
fprintf('Generate prediction curve (random shapelet) ...\n');
tTemp = tic();
probPrRS = cell(dataNum, 1);
parfor i = 1:dataNum
[~, probPrRS{i}] = applySlidingWindowRS(dataRS{i}, dataRSLen, ...
splet, featMean, featStd, svmModelRS);
end
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% compute prediction curve
fprintf('Generate prediction curve (sparse coding) ...\n');
tTemp = tic();
probPrSC = cell(dataNum, 1);
parfor i = 1:dataNum
[~, probPrSC{i}] = applySlidingWindowSC(dataSC{i}, dataSCLen, ...
dic, svmModelSC);
end
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% post process the curve
probPr = cell(size(probPrRS));
labPr = cell(size(probPrRS));
for i = 1:length(probPr)
for j = 1:size(probPrRS{i}, 1)
probPrRS{i}(j, :) = smooth(probPrRS{i}(j, :), 51);
end
probPr{i} = probPrRS{i} * bestAccRS + probPrSC{i} * bestAccSC;
labPr{i} = zeros(1, size(probPr{i}, 2));
for j = 1:size(probPr{i}, 2)
probPr{i}(:, j) = probPr{i}(:, j) / sum(probPr{i}(:, j));
[~, labPr{i}(j)] = max(probPr{i}(:, j));
end
end
%% find start and end
fprintf('Find label, start points, and end points ... ');
tTemp = tic();
stLoc = zeros(dataNum, 6);
edLoc = zeros(dataNum, 6);
lab = zeros(dataNum, 6);
for i = 1:dataNum
for j = 1:6
stLocLeft = max(1, (j-1)*51-24);
stLocRight = min(306, (j-1)*51+26);
lab(i,j) = mode(labPr{i}(stLocLeft:stLocRight));
[~, stLoc(i,j)] = max(probPr{i}(lab(i,j), stLocLeft:stLocRight));
stLoc(i,j) = stLoc(i,j) + stLocLeft - 1;
end
for j = 1:6
edLocLeft = stLoc(i,j);
if j == 6
edLocRight = 306;
else
edLocRight = stLoc(i,j+1)-1;
end
[~, edLoc(i,j)] = min(probPr{i}(lab(i,j), edLocLeft:edLocRight));
edLoc(i,j) = edLoc(i,j) + edLocLeft - 1;
if j < 6 && stLoc(i,j+1)-edLoc(i,j)>20
stLoc(i,j+1) = edLoc(i,j) + 1;
end
end
edLoc(i,6) = 306;
end
tTemp = toc(tTemp);
fprintf('%5.3f s\n', tTemp);
%% output predicted label
fileID = fopen(fnameOut,'w');
for i = 1:dataNum
for j = 1:6
fprintf(fileID, '%d:%d-%d ', lab(i,j), stLoc(i,j)-1, edLoc(i,j)-1);
end
fprintf(fileID, '\n');
end
fclose(fileID);
function [labPr, probPr] = applySlidingWindowRS(data, slLen, splet, ...
featMean, featStd, svmModel)
%% initialization
dataLen = size(data, 2);
slNum = dataLen - slLen + 1;
%% extract subsequences
feat = cell(slNum, 1);
for j = 1:slNum
feat{j} = spletTran(data(:, j:j+slLen-1), splet);
end
feat = cell2mat(feat);
feat = feat - repmat(featMean, slNum, 1);
feat = feat ./ repmat(featStd, slNum, 1);
feat = full(feat);
%% apply svm model
lab = double(ones(slNum, 1));
[labPr, ~, probPr] = svmpredict2(lab, feat, svmModel, '-b 1');
%% reorder svm model
labPr = labPr';
probPrRe = zeros(size(probPr))';
for i = 1:length(svmModel.Label)
probPrRe(svmModel.Label(i), :) = probPr(:, i);
end
probPr = probPrRe;
function [labPr, probPr] = applySlidingWindowSC(data, slLen, dic, svmModel)
%% initialization
dataLen = size(data, 2);
slNum = dataLen - slLen + 1;
%% extract subsequences
feat = cell(slNum, 1);
for j = 1:slNum
feat{j} = sparseCodeTran(data(:, j:j+slLen-1), dic);
end
feat = cell2mat(feat);
feat = full(feat);
%% apply svm model
lab = double(ones(slNum, 1));
[labPr, ~, probPr] = svmpredict2(lab, feat, svmModel, '-b 1');
%% reorder svm model
labPr = labPr';
probPrRe = zeros(size(probPr))';
for i = 1:length(svmModel.Label)
probPrRe(svmModel.Label(i), :) = probPr(:, i);
end
probPr = probPrRe;