-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
70 lines (64 loc) · 2.73 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import csv
import cv2
from torch.utils.data import Dataset
from torchvision import transforms
import numpy as np
import torch
import torch.utils.data as Data
from PIL import Image
class myDataset(Dataset):
def __init__(self, img_dir='/home/mediarti2/Dataset/Imagenet', data_type='RGB', train=False, transform=None):
self.data_type = data_type
self.train = train
self.img_dir = img_dir
self.transform = transform
self.filename_list = []
self.folder_list = []
self.label = []
if self.train == True:
self.img_dir = os.path.join(self.img_dir,'train')
else:
self.img_dir = os.path.join(self.img_dir,'val')
self.folder_list = sorted(os.listdir(self.img_dir))
for folder_name in self.folder_list:
img_list = sorted(os.listdir(os.path.join(self.img_dir,folder_name)))
img_list = [os.path.join(self.img_dir,folder_name,img) for img in img_list]
self.filename_list.append(img_list)
self.filename_list = sum(self.filename_list,[])
for i in range(len(self.filename_list)):
self.label.append(self.filename_list[i][37:46])
for i in range(len(self.label)):
self.label[i] = self.folder_list.index(self.label[i])
def __len__(self):
return len(self.filename_list)
def __getitem__(self, idx):
img = Image.open(self.filename_list[idx]).convert(self.data_type)
#img = cv2.imread(self.filename_list[idx])[::-1]
img = self.transform(img)
label = self.label[idx]
return img, label
def path_join(x,folder_name,root):
return os.path.join(root,folder_name,x)
def main():
dataset = myDataset(img_dir='/home/mediagti2/Dataset/Imagenet',
train=False,
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224,224), interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),(0.229, 0.224, 0.225)),
]))
dataloader = Data.DataLoader(dataset, batch_size=5,
shuffle=False,
num_workers= 10,
)
from tqdm import tqdm
pbar = tqdm(total=len(dataloader),ncols=120)
for step,(img,label) in enumerate(dataloader):
#print(step)
pbar.update()
#pbar.set_postfix({'size':video.size(), 'seq':seq_len})
pbar.close()
if __name__ == '__main__':
main()