-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpriority_dictionary.py
92 lines (70 loc) · 3.03 KB
/
priority_dictionary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
""" priority_dict class was used to implement heaps efficiently. The class makes it
possible to update the dictionary key values in constant time. The class was taken from
the url given below."""
## {{{ http://code.activestate.com/recipes/522995/ (r1)
from heapq import heapify, heappush, heappop
class priority_dict(dict):
"""Dictionary that can be used as a priority queue.
Keys of the dictionary are items to be put into the queue, and values
are their respective priorities. All dictionary methods work as expected.
The advantage over a standard heapq-based priority queue is
that priorities of items can be efficiently updated (amortized O(1))
using code as 'thedict[item] = new_priority.'
The 'smallest' method can be used to return the object with lowest
priority, and 'pop_smallest' also removes it.
The 'sorted_iter' method provides a destructive sorted iterator.
"""
def __init__(self, *args, **kwargs):
super(priority_dict, self).__init__(*args, **kwargs)
self._rebuild_heap()
def _rebuild_heap(self):
self._heap = [(v, k) for k, v in self.iteritems()]
heapify(self._heap)
def smallest(self):
"""Return the item with the lowest priority.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heap[0]
while k not in self or self[k] != v:
heappop(heap)
v, k = heap[0]
return k
def pop_smallest(self):
"""Return the item with the lowest priority and remove it.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heappop(heap)
while k not in self or self[k] != v:
v, k = heappop(heap)
del self[k]
return k
def __setitem__(self, key, val):
# We are not going to remove the previous value from the heap,
# since this would have a cost O(n).
super(priority_dict, self).__setitem__(key, val)
if len(self._heap) < 2 * len(self):
heappush(self._heap, (val, key))
else:
# When the heap grows larger than 2 * len(self), we rebuild it
# from scratch to avoid wasting too much memory.
self._rebuild_heap()
def setdefault(self, key, val):
if key not in self:
self[key] = val
return val
return self[key]
def update(self, *args, **kwargs):
# Reimplementing dict.update is tricky -- see e.g.
# http://mail.python.org/pipermail/python-ideas/2007-May/000744.html
# We just rebuild the heap from scratch after passing to super.
super(priority_dict, self).update(*args, **kwargs)
self._rebuild_heap()
def sorted_iter(self):
"""Sorted iterator of the priority dictionary items.
Beware: this will destroy elements as they are returned.
"""
while self:
yield self.pop_smallest()
## end of http://code.activestate.com/recipes/522995/ }}}