-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
51 lines (43 loc) · 1.69 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
from default_paths import DATA_MNIST
from torchvision.transforms import ToTensor, Compose, Resize
from data_handling.augmentations import ExpandChannels
from torchvision.datasets import MNIST, SVHN
class MNISTDataModule(LightningDataModule):
def __init__(self, batch_size=128, num_workers=12, shuffle=True, *args, **kwargs) -> None:
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.shuffle = shuffle
self.preprocess = Compose([ToTensor(), ExpandChannels()])
def setup(self, stage=None):
self.dataset_train = MNIST(root=DATA_MNIST, train=True, transform=self.preprocess, download=True)
self.dataset_val = MNIST(root=DATA_MNIST, train=False, transform=self.preprocess, download=True)
def train_dataloader(self):
return DataLoader(
self.dataset_train,
self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
self.dataset_val,
self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
def test_dataloader(self):
raise NotImplementedError
def get_all_ood_dataloaders(self):
svhn = SVHN(root=DATA_MNIST, split="test", transform=Compose([ToTensor(), Resize(28)]), download=True)
return [
(
"svhn",
DataLoader(svhn, self.batch_size, shuffle=False, num_workers=self.num_workers),
),
]
@property
def num_classes(self):
return 10