-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpacs.py
86 lines (72 loc) · 2.47 KB
/
pacs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from torchvision.transforms import ToTensor
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset
import h5py
import numpy as np
from default_paths import DATA_PACS
class PACSModule(pl.LightningDataModule):
def __init__(self, batch_size=64, num_workers=12, shuffle=True, *args, **kwargs):
super().__init__()
self.preprocess = ToTensor()
self.shuffle = shuffle
self.batch_size = batch_size
self.num_workers = num_workers
def setup(self, stage=None) -> None:
self.dataset_train = PACSDataset(
split="train",
domain="photo",
transform=self.preprocess,
)
self.dataset_val = PACSDataset(
split="test",
domain="photo",
transform=self.preprocess,
)
def train_dataloader(self):
return DataLoader(
self.dataset_train,
self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
self.dataset_val,
self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
def get_all_ood_dataloaders(self):
list_loaders = []
for domain in ["cartoon", "art_painting", "sketch"]:
list_loaders.append(
(
domain,
DataLoader(
PACSDataset(split="test", domain=domain, transform=self.preprocess),
self.batch_size,
shuffle=False,
num_workers=self.num_workers,
),
)
)
return list_loaders
@property
def num_classes(self):
return 7
class PACSDataset(Dataset):
def __init__(self, split, domain, transform=None) -> None:
super().__init__()
self.split = split
self.domain = domain
self.name = f"{domain}_{split}.hdf5"
self.transform = transform
with h5py.File(DATA_PACS / self.name, "r") as f:
self.images = np.array(f["images"][:]).astype(np.uint8)
self.labels = np.array(f["labels"][:]).astype(np.int64) - 1
def __getitem__(self, idx):
if self.transform is None:
return self.images[idx], self.labels[idx]
return self.transform(self.images[idx]), self.labels[idx]
def __len__(self):
return self.labels.size