This repository has been archived by the owner on Feb 9, 2021. It is now read-only.
forked from brentp/irelate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel.go
407 lines (353 loc) · 10.6 KB
/
parallel.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
package irelate
// parallel implements a parallel chrom-sweep.
// broad design is covered in design.md in the irelate package directory.
// In actual fact, there are a number of complexities; most of them relate to
// maintaining intervals in sorted order (and keeping chunks in sorted order)
// while allowing a good level of parallelism.
// more detailed explanations are provided whenever a channel is initialized
// as channels are our main means of keeping order.
// For example
// tochannels := make(chan chan chan []interfaces.Relatable, 2+nprocs/2)
// Seems to have excessive use of channels, but we actually do need this since
// we have 2 levels of parallelization.
// One level is by chunk of query intervals.
// The next is by sub-chunk within the query chunks.
// The 3rd chan is a place-holder so that the work() function, which calls
// the user-defined fn() can be done concurrently (in a go routine).
// The broad pattern used throughout is to send a channel (K) into another
// channel (PARENT) to keep order and then send K into a worker goroutine
// that sends intervals or []intervals into K.
// I have done much tuning; the areas that affect performance are how the work()
// is parallelized (see the code-block that calls work()). And how the query
// chunks are determined. If the query chunks are too small (< 100 intervals),
// we have a lot of overhead in tracking that chunk that only requires a little
// computation. Unless the databases are very dense, then having the query chunks
// quite large helps parallelization. This is an area of potential optimization,
// though no obvious candidates have emerged.
import (
"fmt"
"io"
"log"
"os"
"runtime"
"sort"
"github.com/mendelics/irelate/interfaces"
)
func getStart(v interfaces.Relatable, s int) int {
if ci, ok := v.(interfaces.CIFace); ok {
a, _, ok := ci.CIPos()
if ok && int(a) < s {
return int(a)
}
}
return s
}
func getEnd(v interfaces.Relatable, e int) int {
if ci, ok := v.(interfaces.CIFace); ok {
_, b, ok := ci.CIEnd()
if ok && int(b) > e {
return int(b)
}
}
return e
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type sliceIt struct {
slice []interfaces.Relatable
i int
}
func (s *sliceIt) Next() (interfaces.Relatable, error) {
if s.i < len(s.slice) {
v := s.slice[s.i]
s.i += 1
return v, nil
}
s.slice = nil
return nil, io.EOF
}
func (s *sliceIt) Close() error {
return nil
}
func sliceToIterator(A []interfaces.Relatable) interfaces.RelatableIterator {
return &sliceIt{A, 0}
}
// islice makes []interfaces.Relatable sortable.
type islice []interfaces.Relatable
func (i islice) Len() int {
return len(i)
}
func (i islice) Less(a, b int) bool {
if i[a].Start() < i[b].Start() {
return true
}
if i[a].Start() == i[b].Start() && i[a].End() <= i[b].End() {
return true
}
return false
}
func (is islice) Swap(i, j int) {
is[i], is[j] = is[j], is[i]
}
type pos struct {
chrom string
start int
end int
}
func (p pos) Chrom() string {
return p.chrom
}
func (p pos) Start() uint32 {
return uint32(p.start)
}
func (p pos) End() uint32 {
return uint32(p.end)
}
// make a set of streams ready to be sent to irelate.
func makeStreams(receiver chan []interfaces.RelatableIterator, mustSort bool, A []interfaces.Relatable, lastChrom string, minStart int, maxEnd int, dbs ...interfaces.Queryable) {
if mustSort {
sort.Sort(islice(A))
}
streams := make([]interfaces.RelatableIterator, 0, len(dbs)+1)
streams = append(streams, sliceToIterator(A))
p := pos{lastChrom, minStart, maxEnd}
for _, db := range dbs {
stream, err := db.Query(p)
if err != nil {
log.Fatal(err)
}
streams = append(streams, stream)
}
receiver <- streams
close(receiver)
}
func checkOverlap(a, b interfaces.Relatable) bool {
return b.Start() < a.End()
}
func less(a, b interfaces.Relatable) bool {
return a.Start() < b.Start() || (a.Start() == b.Start() && a.End() < b.End())
}
type ciRel struct {
interfaces.Relatable
index int
}
func (ci ciRel) Start() uint32 {
return uint32(getStart(ci.Relatable, int(ci.Relatable.Start())))
}
func (ci ciRel) End() uint32 {
return uint32(getEnd(ci.Relatable, int(ci.Relatable.End())))
}
// PIRelate implements a parallel IRelate
func PIRelate(chunk int, maxGap int, qstream interfaces.RelatableIterator, ciExtend bool, fn func(interfaces.Relatable), dbs ...interfaces.Queryable) interfaces.RelatableChannel {
nprocs := runtime.GOMAXPROCS(-1)
// final interval stream sent back to caller.
intersected := make(chan interfaces.Relatable, 2048)
// receivers keeps the interval chunks in order.
receivers := make(chan chan []interfaces.RelatableIterator, 1)
// to channels recieves channels that accept intervals from IRelate to be sent for merging.
// we send slices of intervals to reduce locking.
tochannels := make(chan chan chan []interfaces.Relatable, 2+nprocs/2)
verbose := os.Getenv("IRELATE_VERBOSE") == "TRUE"
// the user-defined callback runs int it's own goroutine.
// call on the relatable itself. but with all of the associated intervals.
work := func(rels []interfaces.Relatable, fn func(interfaces.Relatable)) chan []interfaces.Relatable {
ch := make(chan []interfaces.Relatable, 0)
go func() {
if fn != nil {
for _, r := range rels {
fn(r)
}
}
ch <- rels
close(ch)
}()
return ch
}
if ciExtend {
work = func(rels []interfaces.Relatable, fn func(interfaces.Relatable)) chan []interfaces.Relatable {
ch := make(chan []interfaces.Relatable, 0)
go func() {
if fn != nil {
for _, r := range rels {
fn(r.(ciRel).Relatable)
}
}
ch <- rels
close(ch)
}()
return ch
}
}
// pull the intervals from IRelate, call fn() and (via work()) send chunks to be merged.
// calling fn() is a bottleneck. so we make sub-chunks and process them in a separate go-routine
// in work()
// inner channel keeps track of the order for each big chunk
go func() {
for streamsChan := range receivers {
inner := make(chan chan []interfaces.Relatable, nprocs)
tochannels <- inner
// push a channel to to channels out here
// and then push to that channel inside this goroutine.
// this maintains order of the intervals.
go func(streams []interfaces.RelatableIterator) {
N := 400
//saved := make([]interfaces.Relatable, N)
iterator := IRelate(checkOverlap, 0, less, streams...)
saved := make([]interfaces.Relatable, N)
k := 0
for {
interval, err := iterator.Next()
if err == io.EOF {
iterator.Close()
break
}
saved[k] = interval
k++
if k == N {
inner <- work(saved, fn)
k = 0
saved = make([]interfaces.Relatable, N)
}
}
if k > 0 {
inner <- work(saved[:k], fn)
}
close(inner)
}(<-streamsChan) // only one, just used a chan for ordering.
}
close(tochannels)
}()
go mergeIntervals(tochannels, intersected, ciExtend)
// split the query intervals into chunks and send for processing to irelate.
go func() {
A := make([]interfaces.Relatable, 0, chunk/2)
lastStart := -10
lastChrom := ""
minStart := int(^uint32(0) >> 1)
maxEnd := 0
var totalParsed, totalSkipped, c, idx int
for {
v, err := qstream.Next()
if err == io.EOF {
qstream.Close()
}
if v == nil {
break
}
if ciExtend {
// turn it into an object that will return the ci bounds for Start(), End()
v = ciRel{v, idx}
idx++
}
// these will be based on CIPOS, CIEND if ciExtend is true
s, e := int(v.Start()), int(v.End())
// end chunk when:
// 1. switch chroms
// 2. see maxGap bases between adjacent intervals (currently looks at start only)
// 3. reaches chunkSize (and has at least a gap of 2 bases from last interval).
if v.Chrom() != lastChrom || (len(A) > 2048 && s-lastStart > maxGap) || ((s-lastStart > 25 && len(A) >= chunk) || len(A) >= chunk+200) || s-lastStart > 10*maxGap {
if len(A) > 0 {
// we push a channel onto a queue (another channel) and use that as the output order.
ch := make(chan []interfaces.RelatableIterator, 0)
receivers <- ch
// send work to IRelate
go makeStreams(ch, ciExtend, A, lastChrom, minStart, maxEnd, dbs...)
c++
if verbose {
if lastChrom == v.Chrom() {
totalSkipped += s - lastStart
}
totalParsed += maxEnd - minStart
var mem runtime.MemStats
runtime.ReadMemStats(&mem)
log.Println("intervals in current chunk:", len(A), fmt.Sprintf("%s:%d-%d", lastChrom, minStart, maxEnd), "gap:", s-lastStart)
log.Println("\tc:", c, "receivers:", len(receivers), "tochannels:", len(tochannels), "intersected:", len(intersected))
log.Printf("\tmemory use: %dMB , heap in use: %dMB\n", mem.Alloc/uint64(1000*1000),
mem.HeapInuse/uint64(1000*1000))
log.Printf("\ttotal bases skipped / parsed: %d / %d (%.2f)\n", totalSkipped, totalParsed, float64(totalSkipped)/float64(totalParsed))
}
}
lastStart = s
lastChrom, minStart, maxEnd = v.Chrom(), s, e
A = make([]interfaces.Relatable, 0, chunk/2)
} else {
lastStart = s
maxEnd = max(e, maxEnd)
minStart = min(s, minStart)
}
A = append(A, v)
}
if len(A) > 0 {
ch := make(chan []interfaces.RelatableIterator, 0)
receivers <- ch
go makeStreams(ch, ciExtend, A, lastChrom, minStart, maxEnd, dbs...)
c++
}
close(receivers)
}()
return intersected
}
func mergeIntervals(tochannels chan chan chan []interfaces.Relatable, intersected chan interfaces.Relatable, ciExtend bool) {
// merge the intervals from different channels keeping order.
// 2 separate function code-blocks so there is no performance hit when they don't
// care about the cipos.
if ciExtend {
nextPrint := 0
q := make(map[int]ciRel, 100)
for och := range tochannels {
for ch := range och {
for intervals := range ch {
for _, interval := range intervals {
ci := interval.(ciRel)
if ci.index == nextPrint {
intersected <- ci.Relatable
nextPrint++
} else {
q[ci.index] = ci
for {
n, ok := q[nextPrint]
if !ok {
break
}
delete(q, nextPrint)
intersected <- n.Relatable
nextPrint++
}
}
}
// empty out the q
for {
n, ok := q[nextPrint]
if !ok {
break
}
delete(q, nextPrint)
intersected <- n.Relatable
nextPrint++
}
}
}
}
} else {
for och := range tochannels {
for ch := range och {
for intervals := range ch {
for _, interval := range intervals {
intersected <- interval
}
}
}
}
}
close(intersected)
}