@@ -468,6 +468,128 @@ def gen_batch_initial_conditions(
468468 return batch_initial_conditions
469469
470470
471+ def gen_optimal_input_initial_conditions (
472+ acq_function : AcquisitionFunction ,
473+ bounds : Tensor ,
474+ q : int ,
475+ num_restarts : int ,
476+ raw_samples : int ,
477+ fixed_features : dict [int , float ] | None = None ,
478+ options : dict [str , bool | float | int ] | None = None ,
479+ inequality_constraints : list [tuple [Tensor , Tensor , float ]] | None = None ,
480+ equality_constraints : list [tuple [Tensor , Tensor , float ]] | None = None ,
481+ ):
482+ r"""Generate a batch of initial conditions for random-restart optimziation of
483+ information-theoretic acquisition functions (PES & JES), where sampled optimizers
484+ of the posterior constitute good initial guesses for further optimization. A
485+ fraction of initial samples (by default: 100%) are drawn as perturbations around
486+ `acq.optimal_inputs`. On average, this drastically decreases the runtime of
487+ acquisition function optimization and yields higher-valued candidates by acquisition
488+ function value. See https://github.com/pytorch/botorch/pull/2751 for more info.
489+
490+ Args:
491+ acq_function: The acquisition function to be optimized.
492+ bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`.
493+ q: The number of candidates to consider.
494+ num_restarts: The number of starting points for multistart acquisition
495+ function optimization.
496+ raw_samples: The number of raw samples to consider in the initialization
497+ heuristic. Note: if `sample_around_best` is True (the default is False),
498+ then `2 * raw_samples` samples are used.
499+ fixed_features: A map `{feature_index: value}` for features that
500+ should be fixed to a particular value during generation.
501+ options: Options for initial condition generation. These contain all
502+ settings for the standard heuristic initialization from
503+ `gen_batch_initial_conditions`. In addition, they contain
504+ `frac_random` (the fraction of points drawn fully at random as opposed
505+ to around the drawn optimizers from the posterior).
506+ `sample_around_best_sigma` dictates both the standard deviation of the
507+ samples drawn from posterior maximizers, and the samples from previous
508+ best (if enabled).
509+ inequality constraints: A list of tuples (indices, coefficients, rhs),
510+ with each tuple encoding an inequality constraint of the form
511+ `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`.
512+ equality constraints: A list of tuples (indices, coefficients, rhs),
513+ with each tuple encoding an inequality constraint of the form
514+ `\sum_i (X[indices[i]] * coefficients[i]) = rhs`.
515+
516+ Returns:
517+ A `num_restarts x q x d` tensor of initial conditions.
518+ """
519+ options = options or {}
520+ device = bounds .device
521+ if not hasattr (acq_function , "optimal_inputs" ):
522+ raise AttributeError (
523+ "gen_optimal_input_initial_conditions can only be used with "
524+ "an AcquisitionFunction that has an optimal_inputs attribute."
525+ )
526+ frac_random : float = options .get ("frac_random" , 0.0 )
527+ if not 0 <= frac_random <= 1 :
528+ raise ValueError (
529+ f"frac_random must take on values in (0,1). Value: { frac_random } "
530+ )
531+
532+ batch_limit = options .get ("batch_limit" )
533+ num_optima = acq_function .optimal_inputs .shape [:- 1 ].numel ()
534+ suggestions = acq_function .optimal_inputs .reshape (num_optima , - 1 )
535+ X = torch .empty (0 , q , bounds .shape [1 ], dtype = bounds .dtype )
536+ num_random = round (raw_samples * frac_random )
537+ if num_random > 0 :
538+ X_rnd = sample_q_batches_from_polytope (
539+ n = num_random ,
540+ q = q ,
541+ bounds = bounds ,
542+ n_burnin = options .get ("n_burnin" , 10000 ),
543+ n_thinning = options .get ("n_thinning" , 32 ),
544+ equality_constraints = equality_constraints ,
545+ inequality_constraints = inequality_constraints ,
546+ )
547+ X = torch .cat ((X , X_rnd ))
548+
549+ if num_random < raw_samples :
550+ X_perturbed = sample_points_around_best (
551+ acq_function = acq_function ,
552+ n_discrete_points = q * (raw_samples - num_random ),
553+ sigma = options .get ("sample_around_best_sigma" , 1e-2 ),
554+ bounds = bounds ,
555+ best_X = suggestions ,
556+ )
557+ X_perturbed = X_perturbed .view (
558+ raw_samples - num_random , q , bounds .shape [- 1 ]
559+ ).cpu ()
560+ X = torch .cat ((X , X_perturbed ))
561+
562+ if options .get ("sample_around_best" , False ):
563+ X_best = sample_points_around_best (
564+ acq_function = acq_function ,
565+ n_discrete_points = q * raw_samples ,
566+ sigma = options .get ("sample_around_best_sigma" , 1e-2 ),
567+ bounds = bounds ,
568+ )
569+ X_best = X_best .view (raw_samples , q , bounds .shape [- 1 ]).cpu ()
570+ X = torch .cat ((X , X_best ))
571+
572+ X_rnd = fix_features (X , fixed_features = fixed_features ).cpu ()
573+ with torch .no_grad ():
574+ if batch_limit is None :
575+ batch_limit = X .shape [0 ]
576+ # Evaluate the acquisition function on `X_rnd` using `batch_limit`
577+ # sized chunks.
578+ acq_vals = torch .cat (
579+ [
580+ acq_function (x_ .to (device = device )).cpu ()
581+ for x_ in X .split (split_size = batch_limit , dim = 0 )
582+ ],
583+ dim = 0 ,
584+ )
585+ idx = boltzmann_sample (
586+ function_values = acq_vals ,
587+ num_samples = num_restarts ,
588+ eta = options .get ("eta" , 2.0 ),
589+ )
590+ return X [idx ]
591+
592+
471593def gen_one_shot_kg_initial_conditions (
472594 acq_function : qKnowledgeGradient ,
473595 bounds : Tensor ,
@@ -1136,6 +1258,7 @@ def sample_points_around_best(
11361258 best_pct : float = 5.0 ,
11371259 subset_sigma : float = 1e-1 ,
11381260 prob_perturb : float | None = None ,
1261+ best_X : Tensor | None = None ,
11391262) -> Tensor | None :
11401263 r"""Find best points and sample nearby points.
11411264
@@ -1154,60 +1277,62 @@ def sample_points_around_best(
11541277 An optional `n_discrete_points x d`-dim tensor containing the
11551278 sampled points. This is None if no baseline points are found.
11561279 """
1157- X = get_X_baseline (acq_function = acq_function )
1158- if X is None :
1159- return
1160- with torch .no_grad ():
1161- try :
1162- posterior = acq_function .model .posterior (X )
1163- except AttributeError :
1164- warnings .warn (
1165- "Failed to sample around previous best points." ,
1166- BotorchWarning ,
1167- stacklevel = 3 ,
1168- )
1280+ if best_X is None :
1281+ X = get_X_baseline (acq_function = acq_function )
1282+ if X is None :
11691283 return
1170- mean = posterior .mean
1171- while mean .ndim > 2 :
1172- # take average over batch dims
1173- mean = mean .mean (dim = 0 )
1174- try :
1175- f_pred = acq_function .objective (mean )
1176- # Some acquisition functions do not have an objective
1177- # and for some acquisition functions the objective is None
1178- except (AttributeError , TypeError ):
1179- f_pred = mean
1180- if hasattr (acq_function , "maximize" ):
1181- # make sure that the optimiztaion direction is set properly
1182- if not acq_function .maximize :
1183- f_pred = - f_pred
1184- try :
1185- # handle constraints for EHVI-based acquisition functions
1186- constraints = acq_function .constraints
1187- if constraints is not None :
1188- neg_violation = - torch .stack (
1189- [c (mean ).clamp_min (0.0 ) for c in constraints ], dim = - 1
1190- ).sum (dim = - 1 )
1191- feas = neg_violation == 0
1192- if feas .any ():
1193- f_pred [~ feas ] = float ("-inf" )
1194- else :
1195- # set objective equal to negative violation
1196- f_pred = neg_violation
1197- except AttributeError :
1198- pass
1199- if f_pred .ndim == mean .ndim and f_pred .shape [- 1 ] > 1 :
1200- # multi-objective
1201- # find pareto set
1202- is_pareto = is_non_dominated (f_pred )
1203- best_X = X [is_pareto ]
1204- else :
1205- if f_pred .shape [- 1 ] == 1 :
1206- f_pred = f_pred .squeeze (- 1 )
1207- n_best = max (1 , round (X .shape [0 ] * best_pct / 100 ))
1208- # the view() is to ensure that best_idcs is not a scalar tensor
1209- best_idcs = torch .topk (f_pred , n_best ).indices .view (- 1 )
1210- best_X = X [best_idcs ]
1284+ with torch .no_grad ():
1285+ try :
1286+ posterior = acq_function .model .posterior (X )
1287+ except AttributeError :
1288+ warnings .warn (
1289+ "Failed to sample around previous best points." ,
1290+ BotorchWarning ,
1291+ stacklevel = 3 ,
1292+ )
1293+ return
1294+ mean = posterior .mean
1295+ while mean .ndim > 2 :
1296+ # take average over batch dims
1297+ mean = mean .mean (dim = 0 )
1298+ try :
1299+ f_pred = acq_function .objective (mean )
1300+ # Some acquisition functions do not have an objective
1301+ # and for some acquisition functions the objective is None
1302+ except (AttributeError , TypeError ):
1303+ f_pred = mean
1304+ if hasattr (acq_function , "maximize" ):
1305+ # make sure that the optimiztaion direction is set properly
1306+ if not acq_function .maximize :
1307+ f_pred = - f_pred
1308+ try :
1309+ # handle constraints for EHVI-based acquisition functions
1310+ constraints = acq_function .constraints
1311+ if constraints is not None :
1312+ neg_violation = - torch .stack (
1313+ [c (mean ).clamp_min (0.0 ) for c in constraints ], dim = - 1
1314+ ).sum (dim = - 1 )
1315+ feas = neg_violation == 0
1316+ if feas .any ():
1317+ f_pred [~ feas ] = float ("-inf" )
1318+ else :
1319+ # set objective equal to negative violation
1320+ f_pred = neg_violation
1321+ except AttributeError :
1322+ pass
1323+ if f_pred .ndim == mean .ndim and f_pred .shape [- 1 ] > 1 :
1324+ # multi-objective
1325+ # find pareto set
1326+ is_pareto = is_non_dominated (f_pred )
1327+ best_X = X [is_pareto ]
1328+ else :
1329+ if f_pred .shape [- 1 ] == 1 :
1330+ f_pred = f_pred .squeeze (- 1 )
1331+ n_best = max (1 , round (X .shape [0 ] * best_pct / 100 ))
1332+ # the view() is to ensure that best_idcs is not a scalar tensor
1333+ best_idcs = torch .topk (f_pred , n_best ).indices .view (- 1 )
1334+ best_X = X [best_idcs ]
1335+
12111336 use_perturbed_sampling = best_X .shape [- 1 ] >= 20 or prob_perturb is not None
12121337 n_trunc_normal_points = (
12131338 n_discrete_points // 2 if use_perturbed_sampling else n_discrete_points
0 commit comments