forked from abyzovlab/CNVnator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotbaf.py
executable file
·171 lines (150 loc) · 4.3 KB
/
plotbaf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/python
import matplotlib.pyplot as plt
import numpy
import ROOT
import argparse
parser = argparse.ArgumentParser(description='Plot BAF')
parser.add_argument("root_file", help="cnvnator root file name")
parser.add_argument("region", help="Chromosome or region in format chr:START-END")
parser.add_argument("-bs", "--binsize", type=int,
help="size of bins", default=100000)
parser.add_argument("-res", "--resolution", type=int,
help="size of bins", default=100)
parser.add_argument("-o", "--save_file",
help="save plot to file", default=None)
parser.add_argument("-t", "--title",
help="plot title", default=None)
parser.add_argument('-nomask', action='store_true')
parser.add_argument('-useid', action='store_true')
args=parser.parse_args()
pmin=-1
pmax=1e10
chr=""
if args.region.find(":")>-1:
ss=args.region.split(":")
chr=ss[0]
pmin=int(ss[1].split("-")[0])
pmax=int(ss[1].split("-")[1])
else:
chr=args.region
f=ROOT.TFile(args.root_file)
t=f.Get("vcf_"+chr)
data=[]
for e in t:
if e.position>pmin and e.position<pmax:
data.append([e.position,e._gt,e.nref,e.nalt,e.flag])
res=args.resolution
bs=args.binsize
def f(k,m,p):
if(k==m):
return 1.0*p**k*(1-p)**m
else:
return 1.0*p**k*(1-p)**m+1.0*p**m*(1-p)**k
def lh(samples):
if len(samples)==0:
return numpy.zeros(res+1)
x=numpy.arange(0,1.+1.0/res,1.0/res)
y=numpy.ones(res+1)
for (a,b) in samples:
s=0.
for pi in range(res+1):
y[pi]=y[pi]*f(a,b,x[pi])
s=s+y[pi]
y=y/s
return y
g1=[]
g2=[]
baf=[]
pos=[]
for i in data:
if (i[3]+i[2])>0 and (i[1]==1 or i[1]==5 or i[1]==6) and (args.nomask or i[4]>1) and (i[4]==1 or i[4]==3 or not args.useid):
pos.append(i[0])
nr=i[2]
na=i[3]
if na<nr:
na=na+1
elif nr<na:
nr=nr+1
g1.append(nr)
g2.append(na)
baf.append(1.0*na/(nr+na))
def maf(x):
if x>0.5:
return 1-x
else:
return x
n=(pos[-1]-pos[0])/bs+1
binp=[pos[0]+i*bs for i in range(n)]
bg=[[] for i in range(n)]
bbaf=[[] for i in range(n)]
bcount=[0 for i in range(n)]
for i in range(len(baf)):
bix=(pos[i]-pos[0])/bs
bg[bix].append((g1[i],g2[i]))
bbaf[bix].append(baf[i])
bcount[bix]=bcount[bix]+1
m=numpy.vstack([lh(bg[i]) for i in range(n)])
av=numpy.array([0.5 if bcount[i]==0 else numpy.mean(map(maf,bbaf[i])) for i in range(n)])
sd=numpy.array([0 if bcount[i]==0 else numpy.std(map(maf,bbaf[i])) for i in range(n)])
ng=[]
ng2=[]
for i in range(n):
m1=0
m2=0
i1=0
i2=0
for j in range(res+1):
if j>res/2:
if m[i][j]>m1:
m1=m[i][j]
i1=j
elif j==res/2:
if m[i][j]>m1:
m1=m[i][j]
i1=j
if m[i][j]>m2:
m2=m[i][j]
i2=j
else:
if m[i][j]>m2:
m2=m[i][j]
i2=j
ng.append(1.0*(i1-i2)/res)
ng2.append(1.0*m[i][res/2]/m1)
fig=plt.figure(1,figsize=(12, 8), dpi=150, facecolor='w', edgecolor='k')
plt.subplot(411)
plt.ylabel("BAF")
plt.scatter(pos,baf,s=2,c="b", alpha=0.5,marker='.')
plt.axis([pos[0], pos[-1], 0, 1])
plt.yticks([0,0.25,0.5,0.75,1.0],("0","0.25","0.50","0.75","1.00"))
plt.grid(True)
plt.tick_params(axis='x',which='both',bottom=False,top=False,labelbottom=False)
plt.subplot(412)
plt.ylabel("Likelihood")
plt.imshow(numpy.transpose(m),aspect='auto')
plt.tick_params(axis='x',which='both',bottom=False,top=False,labelbottom=False)
plt.yticks([0,res/4,res/2-1,3*res/4-1,res+1],("1.00","0.75","0.50","0.25","0.00"))
plt.grid(True,color="w")
plt.subplot(413)
plt.ylabel("W, C/M")
plt.plot(binp,ng,'r-',binp,ng2,'b.', markersize=5)
plt.axis([binp[0], binp[-1], -0.05, 1.05])
plt.yticks([0,0.25,0.5,0.75,1.0],("0","0.25","0.50","0.75","1.00"))
plt.grid(True)
plt.tick_params(axis='x',which='both',bottom=False,top=False,labelbottom=False)
plt.subplot(414)
plt.ylabel("MAF")
plt.errorbar(binp, av, yerr=sd, fmt='o',marker='o', mfc='red', mec='green', ms=0.1, mew=0.0)
plt.plot(binp, av,alpha=0.5,marker='.')
plt.axis([binp[0], binp[-1], 0, 0.6])
plt.yticks([0,0.25,0.5,0.75,1.0],("0","0.25","0.50","0.75","1.00"))
plt.grid(True)
if args.title:
fig.suptitle(args.title, fontsize='large')
else:
fig.suptitle(args.root_file+" - "+chr+":"+str(pos[0])+"-"+str(pos[-1]), fontsize='large')
if args.save_file:
plt.savefig(args.save_file,dpi=150)
plt.close(fig)
else:
plt.show()