-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
492 lines (375 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import numpy as np
import sys
import math
import operator
import csv
import glob,os
import xlrd
import cv2
import pandas as pd
import matplotlib.pyplot as plt
import gc
from sklearn.svm import SVC
from collections import Counter
from sklearn.metrics import confusion_matrix
import scipy.io as sio
import pydot, graphviz
from PIL import Image
from keras.models import Sequential, Model
from keras.utils import np_utils, plot_model
from keras import metrics
from keras import backend as K
from keras.models import model_from_json
from keras.layers import Dense, Dropout, Flatten, Activation, GlobalAveragePooling2D
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing.sequence import pad_sequences
from keras import optimizers
from keras.applications.vgg16 import VGG16 as keras_vgg16
from keras.preprocessing.image import ImageDataGenerator, array_to_img
import keras
from keras.callbacks import EarlyStopping
from labelling import collectinglabel
#from reordering import readinput
from evaluationmatrix import fpr, weighted_average_recall, unweighted_average_recall
from utilities import Read_Input_Images, get_subfolders_num, data_loader_with_LOSO, label_matching, duplicate_channel, read_subjects_todo
from utilities import loading_smic_table, loading_casme_table, loading_samm_table, ignore_casme_samples, ignore_casmergb_samples # data loading scripts
from utilities import record_loss_accuracy, record_weights, record_scores, LossHistory # recording scripts
from utilities import sanity_check_image, gpu_observer
#from samm_utilitis import get_subfolders_num_crossdb, Read_Input_Images_SAMM_CASME, loading_samm_labels
from list_databases import load_db, restructure_data, restructure_data_original
from models import VGG_16, temporal_module, VGG_16_4_channels, convolutional_autoencoder
from keras import backend as K
import ipdb
# nohup python main.py --dB 'CASME2_Optical' --batch_size=20 --spatial_epochs=100 --temporal_epochs=50 --train_id='casme2_testTorek' --spatial_size=224 --flag='st' &
def train(batch_size, spatial_epochs, temporal_epochs, train_id, list_dB, spatial_size, flag, objective_flag, tensorboard):
############## Path Preparation ######################
root_db_path = "/media/ostalo/MihaGarafolj/ME_data/"
tensorboard_path = root_db_path + "tensorboard/"
if os.path.isdir(root_db_path + 'Weights/'+ str(train_id) ) == False:
os.mkdir(root_db_path + 'Weights/'+ str(train_id) )
######################################################
############## Variables ###################
dB = list_dB[0]
r, w, subjects, samples, n_exp, VidPerSubject, vidList, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db(root_db_path, list_dB, spatial_size, objective_flag)
# avoid confusion
if cross_db_flag == 1:
list_samples = listOfIgnoredSamples
# total confusion matrix to be used in the computation of f1 score
tot_mat = np.zeros((n_exp, n_exp))
history = LossHistory()
stopping = EarlyStopping(monitor='loss', min_delta = 0, mode = 'min', patience = 3)
############################################
############## Flags ####################
tensorboard_flag = tensorboard
resizedFlag = 1
train_spatial_flag = 0
train_temporal_flag = 0
svm_flag = 0
finetuning_flag = 0
cam_visualizer_flag = 0
channel_flag = 0
if flag == 'st':
train_spatial_flag = 1
train_temporal_flag = 1
finetuning_flag = 1
elif flag == 's':
train_spatial_flag = 1
finetuning_flag = 1
elif flag == 't':
train_temporal_flag = 1
elif flag == 'nofine':
svm_flag = 1
elif flag == 'scratch':
train_spatial_flag = 1
train_temporal_flag = 1
elif flag == 'st4se' or flag == 'st4se_cde':
train_spatial_flag = 1
train_temporal_flag = 1
channel_flag = 1
elif flag == 'st7se' or flag == 'st7se_cde':
train_spatial_flag = 1
train_temporal_flag = 1
channel_flag = 2
elif flag == 'st4te' or flag == 'st4te_cde':
train_spatial_flag = 1
train_temporal_flag = 1
channel_flag = 3
elif flag == 'st7te' or flag == 'st7te_cde':
train_spatial_flag = 1
train_temporal_flag = 1
channel_flag = 4
#########################################
############ Reading Images and Labels ################
if cross_db_flag == 1:
SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel)
else:
SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag)
labelperSub = label_matching(db_home, dB, subjects, VidPerSubject)
print("Loaded Images into the tray.")
print("Loaded Labels into the tray.")
if channel_flag == 1:
aux_db1 = list_dB[1]
db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/"
if cross_db_flag == 1:
SubperdB = Read_Input_Images_SAMM_CASME(db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1)
else:
SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag)
elif channel_flag == 2:
aux_db1 = list_dB[1]
aux_db2 = list_dB[2]
db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/"
db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/"
if cross_db_flag == 1:
SubperdB_strain = Read_Input_Images_SAMM_CASME(db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1)
SubperdB_gray = Read_Input_Images_SAMM_CASME(db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1)
else:
SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag)
SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1, objective_flag)
elif channel_flag == 3:
aux_db1 = list_dB[1]
db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/"
if cross_db_flag == 1:
SubperdB = Read_Input_Images_SAMM_CASME(db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3)
else:
SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag)
elif channel_flag == 4:
aux_db1 = list_dB[1]
aux_db2 = list_dB[2]
db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/"
db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/"
if cross_db_flag == 1:
SubperdB_strain = Read_Input_Images_SAMM_CASME(db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3)
SubperdB_gray = Read_Input_Images_SAMM_CASME(db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3)
else:
SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag)
SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3, objective_flag)
#######################################################
########### Model Configurations #######################
#K.set_image_dim_ordering('th')
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = 0.8
# K.tensorflow_backend.set_session(tf.Session(config=config))
# Different Conditions for Temporal Learning ONLY
if train_spatial_flag == 0 and train_temporal_flag == 1 and dB != 'CASME2_Optical':
data_dim = spatial_size * spatial_size
elif train_spatial_flag == 0 and train_temporal_flag == 1 and dB == 'CASME2_Optical':
data_dim = spatial_size * spatial_size * 3
elif channel_flag == 3:
data_dim = 8192
elif channel_flag == 4:
data_dim = 12288
else:
data_dim = 4096
########################################################
print("Beginning training process.")
########### Training Process ############
subjects_todo = read_subjects_todo(db_home, dB, train_id, subjects)
for sub in subjects_todo:
adam = optimizers.Adam(lr=0.00001, decay=0.000001)
print("**** starting subject " + str(sub) + " ****")
#gpu_observer()
spatial_weights_name = root_db_path + 'Weights/'+ str(train_id) + '/vgg_spatial_'+ str(train_id) + '_' + str(dB) + '_'
spatial_weights_name_strain = root_db_path + 'Weights/' + str(train_id) + '/vgg_spatial_strain_'+ str(train_id) + '_' + str(dB) + '_'
spatial_weights_name_gray = root_db_path + 'Weights/' + str(train_id) + '/vgg_spatial_gray_'+ str(train_id) + '_' + str(dB) + '_'
temporal_weights_name = root_db_path + 'Weights/' + str(train_id) + '/temporal_ID_' + str(train_id) + '_' + str(dB) + '_'
ae_weights_name = root_db_path + 'Weights/' + str(train_id) + '/autoencoder_' + str(train_id) + '_' + str(dB) + '_'
ae_weights_name_strain = root_db_path + 'Weights/' + str(train_id) + '/autoencoder_strain_' + str(train_id) + '_' + str(dB) + '_'
############### Reinitialization & weights reset of models ########################
temporal_model = temporal_module(data_dim=data_dim, timesteps_TIM=timesteps_TIM, lstm1_size=3000, classes=n_exp)
temporal_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
if channel_flag == 1:
vgg_model = VGG_16_4_channels(classes=n_exp, channels=4, spatial_size = spatial_size)
if finetuning_flag == 1:
for layer in vgg_model.layers[:33]:
layer.trainable = False
vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
elif channel_flag == 2:
vgg_model = VGG_16_4_channels(classes=n_exp, channels=5, spatial_size = spatial_size)
if finetuning_flag == 1:
for layer in vgg_model.layers[:33]:
layer.trainable = False
vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
elif channel_flag == 3 or channel_flag == 4:
vgg_model = VGG_16(spatial_size = spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5')
vgg_model_strain = VGG_16(spatial_size = spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5')
if finetuning_flag == 1:
for layer in vgg_model.layers[:33]:
layer.trainable = False
for layer in vgg_model_strain.layers[:33]:
layer.trainable = False
vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
vgg_model_strain.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
if channel_flag == 4:
vgg_model_gray = VGG_16(spatial_size = spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5')
if finetuning_flag == 1:
for layer in vgg_model_gray.layers[:33]:
layer.trainable = False
vgg_model_gray.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
else:
vgg_model = VGG_16(spatial_size = spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5')
if finetuning_flag == 1:
for layer in vgg_model.layers[:33]:
layer.trainable = False
vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy])
#svm_classifier = SVC(kernel='linear', C=1)
####################################################################################
############ for tensorboard ###############
if tensorboard_flag == 1:
cat_path = tensorboard_path + str(train_id) + str(sub) + "/"
if os.path.exists(cat_path):
os.rmdir(cat_path)
os.mkdir(cat_path)
tbCallBack = keras.callbacks.TensorBoard(log_dir=cat_path, write_graph=True)
cat_path2 = tensorboard_path + str(train_id) + str(sub) + "spatial/"
if os.path.exists(cat_path2):
os.rmdir(cat_path2)
os.mkdir(cat_path2)
tbCallBack2 = keras.callbacks.TensorBoard(log_dir=cat_path2, write_graph=True)
#############################################
Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data(sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, channel)
# Special Loading for 4-Channel
if channel_flag == 1:
_, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data(sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1)
# verify
# sanity_check_image(Test_X_Strain, 1, spatial_size)
# Concatenate Train X & Train_X_Strain
X = np.concatenate((X, Train_X_Strain), axis=1)
test_X = np.concatenate((test_X, Test_X_Strain), axis=1)
total_channel = 4
elif channel_flag == 2:
_, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data(sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1)
_, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data(sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1)
# Concatenate Train_X_Strain & Train_X & Train_X_Gray
X = np.concatenate((X, Train_X_Strain, Train_X_Gray), axis=1)
test_X = np.concatenate((test_X, Test_X_Strain, Test_X_Gray), axis=1)
total_channel = 5
elif channel_flag == 3:
_, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data(sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3)
elif channel_flag == 4:
_, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data(sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3)
_, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data(sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3)
############### check gpu resources ####################
#gpu_observer()
########################################################
print("Beginning training & testing.")
##################### Training & Testing #########################
if train_spatial_flag == 1 and train_temporal_flag == 1:
print("Beginning spatial training.")
# Spatial Training
if tensorboard_flag == 1:
vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history,stopping,tbCallBack2])
elif channel_flag == 3 or channel_flag == 4:
vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping])
vgg_model_strain.fit(Train_X_Strain, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping])
model_strain = record_weights(vgg_model_strain, spatial_weights_name_strain, sub, flag)
output_strain = model_strain.predict(Train_X_Strain, batch_size=batch_size)
if channel_flag == 4:
vgg_model_gray.fit(Train_X_Gray, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping])
model_gray = record_weights(vgg_model_gray, spatial_weights_name_gray, sub, flag)
output_gray = model_gray.predict(Train_X_Gray, batch_size=batch_size)
else:
import ipdb; ipdb.set_trace()
vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history,stopping])
print(".record f1 and loss")
# record f1 and loss
record_loss_accuracy(db_home, train_id, dB, history)
print(".save vgg weights")
# save vgg weights
model = record_weights(vgg_model, spatial_weights_name, sub, flag)
print(".spatial encoding")
# Spatial Encoding
output = model.predict(X, batch_size = batch_size)
# concatenate features for temporal enrichment
if channel_flag == 3:
output = np.concatenate((output, output_strain), axis=1)
elif channel_flag == 4:
output = np.concatenate((output, output_strain, output_gray), axis=1)
import ipdb; ipdb.set_trace()
features = output.reshape(int(Train_X.shape[0]), timesteps_TIM, output.shape[1])
print("Beginning temporal training.")
# Temporal Training
if tensorboard_flag == 1:
temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs, callbacks=[tbCallBack])
else:
temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs)
print(".save temportal weights")
# save temporal weights
temporal_model = record_weights(temporal_model, temporal_weights_name, sub, 't') # let the flag be t
print("Beginning testing.")
print(".predicting with spatial model")
# Testing
output = model.predict(test_X, batch_size = batch_size)
if channel_flag == 3 or channel_flag == 4:
output_strain = model_strain.predict(Test_X_Strain, batch_size=batch_size)
if channel_flag == 4:
output_gray = model_gray.predict(Test_X_Gray, batch_size=batch_size)
# concatenate features for temporal enrichment
if channel_flag == 3:
output = np.concatenate((output, output_strain), axis=1)
elif channel_flag == 4:
output = np.concatenate((output, output_strain, output_gray), axis=1)
print(".outputing features")
features = output.reshape(Test_X.shape[0], timesteps_TIM, output.shape[1])
print(".predicting with temporal model")
predict_values = temporal_model.predict(features, batch_size=batch_size)
predict = np.array([np.argmax(x) for x in predict_values])
##############################################################
#################### Confusion Matrix Construction #############
print (predict)
print (Test_Y_gt.astype(int))
print(".writing predicts to file")
file = open(db_home+'Classification/'+ 'Result/'+'/predicts_' + str(train_id) + '.txt', 'a')
for i in range(len(vidList[sub])):
file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + str(predict.astype(list)[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n")
file.close()
file = open(db_home+'Classification/'+ 'Result/'+'/predictedvalues_' + str(train_id) + '.txt', 'a')
for i in range(len(vidList[sub])):
file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + ','.join(str(e) for e in predict_values[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n")
file.close()
ct = confusion_matrix(Test_Y_gt,predict)
# check the order of the CT
order = np.unique(np.concatenate((predict,Test_Y_gt)))
# create an array to hold the CT for each CV
mat = np.zeros((n_exp,n_exp))
# put the order accordingly, in order to form the overall ConfusionMat
for m in range(len(order)):
for n in range(len(order)):
mat[int(order[m]),int(order[n])]=ct[m,n]
tot_mat = mat + tot_mat
################################################################
#################### cumulative f1 plotting ######################
microAcc = np.trace(tot_mat) / np.sum(tot_mat)
[f1,precision,recall] = fpr(tot_mat,n_exp)
file = open(db_home+'Classification/'+ 'Result/'+'/f1_' + str(train_id) + '.txt', 'a')
file.write(str(f1) + "\n")
file.close()
##################################################################
################# write each CT of each CV into .txt file #####################
record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects)
war = weighted_average_recall(tot_mat, n_exp, samples)
uar = unweighted_average_recall(tot_mat, n_exp)
print("war: " + str(war))
print("uar: " + str(uar))
###############################################################################
################## free memory ####################
del vgg_model
del temporal_model
del model
del Train_X, Test_X, X, y
if channel_flag == 1:
del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain
elif channel_flag == 2:
del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray
elif channel_flag == 3:
del vgg_model_strain, model_strain
del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain
elif channel_flag == 4:
del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray
del vgg_model_gray, vgg_model_strain, model_gray, model_strain
K.get_session().close()
cfg = K.tf.ConfigProto()
cfg.gpu_options.allow_growth = True
K.set_session(K.tf.Session(config=cfg))
gc.collect()
###################################################