-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgurobi_model.py
executable file
·132 lines (117 loc) · 5.92 KB
/
gurobi_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Gurobi version of the university-hospital assignment model.
This model differs from the simpler CVXPY-based model in the following ways:
* All flows are integer-valued.
* We introduce a decision matrix with sparsity constraints to ensure
that each hospital can only send to a specified number of universities,
and each university can only send to a specified number of hospitals.
This model requires a Gurobi license. Academic licenses are available for
free.
"""
from typing import Dict
import numpy as np
import gurobipy as gp
from gurobipy import GRB
def run_gurobi_model(distances: np.ndarray,
dorm_bed_capacity: np.ndarray,
staff_bed_demand: np.ndarray,
patient_bed_demand: np.ndarray,
relative_transport_cost: float,
min_ed_inst_beds: int = 0,
max_ed_inst_per_hosp: int = 1,
max_hosp_per_ed_inst: int = 2,
hosp_systems: np.ndarray = None,
verbose: bool = True,
*args, **kwargs) -> Dict:
"""Runs the Gurobi-based model for university-hospital assignment.
The average travel cost between hospitals and universities is minimized,
subject to the following constraints:
* All bed demand must be sastisfied.
* University dorm capacity cannot be overloaded.
* If a university is used, a minimum threshold of its beds
must be used.
* Sparsity must be satisfied--hospitals can only send to a
specified number of universities, and universities can only
send to a specified number of hospitals.
:param distances: The matrix of pairwise distances between hospitals
and universities. Rows are hospitals; columns are universities.
:param dorm_bed_capacity: The dorm capacity at each university.
Capacities will be rounded and converted to integers.
:param staff_bed_demand: The staff bed demand from each hospital.
Demands will be rounded and converted to integers.
:param patient_bed_demand: The patient bed demand from each hospital.
Demands will be rounded and converted to integers.
:param relative_transport_cost: The relative cost per distance unit
of moving a patient compared to moving a staff member.
:param min_ed_inst_beds: The minimum number of beds assigned to a
university **if it is used**.
:param max_ed_inst_per_hosp: The maximum number of universities assigned
to each hospital.
:param max_ed_inst_per_hosp: The maximum number of hospitals assigned
to each universtity.
:param hosp_systems: Coded hospital systems.
:param verbose: Determines whether to print solver output.
:return: A dictionary of assignment matrices.
"""
n_hosp, n_ed = distances.shape
assert dorm_bed_capacity.size == n_ed
assert staff_bed_demand.size == n_hosp
assert patient_bed_demand.size == n_hosp
dorm_bed_capacity = np.round(dorm_bed_capacity).astype(int)
staff_bed_demand = np.round(staff_bed_demand).astype(int)
patient_bed_demand = np.round(patient_bed_demand).astype(int)
m = gp.Model('beds')
m.modelSense = GRB.MINIMIZE
m.setParam('OutputFlag', verbose)
# Variables
# Difference from CVXPY: Gurobi variables are implicitly non-negative.
staff_assignment = m.addVars(n_hosp,
n_ed,
name='staff_assignment',
vtype=GRB.INTEGER,
obj=distances)
patient_assignment = m.addVars(n_hosp,
n_ed,
name='patient_assignment',
vtype=GRB.INTEGER,
obj=relative_transport_cost * distances)
open_beds = m.addVars(n_hosp,
n_ed,
vtype=GRB.BINARY,
name='open_beds')
# Constraints: flow.
for i in range(n_hosp):
# Constraints: hospital bed demand must be satisfied.
m.addConstr(sum(open_beds[i, j] * staff_assignment[i, j] for j in range(n_ed)) == staff_bed_demand[i])
m.addConstr(sum(open_beds[i, j] * patient_assignment[i, j] for j in range(n_ed)) == patient_bed_demand[i])
for j in range(n_ed):
# Constraints: dorm beds cannot be overutilized.
m.addConstr(sum(open_beds[i, j] * (staff_assignment[i, j] + patient_assignment[i, j])
for i in range(n_hosp)) <= dorm_bed_capacity[j])
# Constraints: dorm beds cannot be underutilized.
m.addConstr(sum(staff_assignment[i, j] + patient_assignment[i, j]
for i in range(n_hosp)) >= min_ed_inst_beds)
# Constraints: sparsity.
for i in range(n_hosp):
m.addConstr(sum(open_beds[i, j] for j in range(n_ed)) == max_ed_inst_per_hosp)
for j in range(n_ed):
m.addConstr(sum(open_beds[i, j] for i in range(n_hosp)) <= max_hosp_per_ed_inst)
if hosp_systems is not None:
for outer in range(n_hosp):
for inner in range(outer + 1, n_hosp):
if hosp_systems[inner] != hosp_systems[outer]:
for i in range(n_ed):
m.addConstr(open_beds[outer, i] + open_beds[inner, i] <= 1)
m.optimize()
# Load matrix of results
staff_results = np.zeros((n_hosp, n_ed), dtype=int)
patient_results = np.zeros((n_hosp, n_ed), dtype=int)
open_results = np.zeros((n_hosp, n_ed), dtype=int)
for i in range(n_hosp):
for j in range(n_ed):
staff_results[i, j] = staff_assignment[i, j].X
patient_results[i, j] = patient_assignment[i, j].X
open_results[i, j] = open_beds[i, j].X
return {
'staff': np.multiply(open_results, staff_results),
'patient': np.multiply(open_results, patient_results)
}