forked from orbital-materials/orb-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
373 lines (314 loc) · 11 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""Finetuning loop."""
import argparse
import logging
import os
from typing import Dict, Optional, Union
import torch
import tqdm
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import BatchSampler, DataLoader, RandomSampler
try:
import wandb
except ImportError:
raise ImportError("wandb is not installed. Please install it with `pip install wandb`.")
from orb_models import utils
from orb_models.dataset.ase_dataset import AseSqliteDataset
from orb_models.forcefield import base, pretrained
from wandb import wandb_run
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def init_wandb_from_config(dataset: str, job_type: str, entity: str) -> wandb_run.Run:
"""Initialise wandb."""
wandb.init( # type: ignore
job_type=job_type,
dir=os.path.join(os.getcwd(), "wandb"),
name=f"{dataset}-{job_type}",
project="orb-experiment",
entity=entity,
mode="online",
sync_tensorboard=False,
)
assert wandb.run is not None
return wandb.run
def finetune(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
dataloader: DataLoader,
lr_scheduler: Optional[_LRScheduler] = None,
num_steps: Optional[int] = None,
clip_grad: Optional[float] = None,
log_freq: float = 10,
device: torch.device = torch.device("cpu"),
epoch: int = 0,
):
"""Train for a fixed number of steps.
Args:
model: The model to optimize.
optimizer: The optimizer for the model.
dataloader: A Pytorch Dataloader, which may be infinite if num_steps is passed.
lr_scheduler: Optional, a Learning rate scheduler for modifying the learning rate.
num_steps: The number of training steps to take. This is required for distributed training,
because controlling parallism is easier if all processes take exactly the same number of steps (
this particularly applies when using dynamic batching).
clip_grad: Optional, the gradient clipping threshold.
log_freq: The logging frequency for step metrics.
device: The device to use for training.
epoch: The number of epochs the model has been fintuned.
Returns
A dictionary of metrics.
"""
run: Optional[wandb_run.Run] = wandb.run
if clip_grad is not None:
hook_handles = utils.gradient_clipping(model, clip_grad)
metrics = utils.ScalarMetricTracker()
# Set the model to "train" mode.
model.train()
# Get tqdm for the training batches
batch_generator = iter(dataloader)
num_training_batches: Union[int, float]
if num_steps is not None:
num_training_batches = num_steps
else:
try:
num_training_batches = len(dataloader)
except TypeError:
raise ValueError("Dataloader has no length, you must specify num_steps.")
batch_generator_tqdm = tqdm.tqdm(batch_generator, total=num_training_batches)
i = 0
batch_iterator = iter(batch_generator_tqdm)
while True:
if num_steps and i == num_steps:
break
optimizer.zero_grad(set_to_none=True)
step_metrics = {
"batch_size": 0.0,
"batch_num_edges": 0.0,
"batch_num_nodes": 0.0,
}
# Reset metrics so that it reports raw values for each step but still do averages on
# the gradient accumulation.
if i % log_freq == 0:
metrics.reset()
batch = next(batch_iterator)
batch = batch.to(device)
step_metrics["batch_size"] += len(batch.n_node)
step_metrics["batch_num_edges"] += batch.n_edge.sum()
step_metrics["batch_num_nodes"] += batch.n_node.sum()
with torch.cuda.amp.autocast(enabled=False):
batch_outputs = model.loss(batch)
loss = batch_outputs.loss
metrics.update(batch_outputs.log)
if torch.isnan(loss):
raise ValueError("nan loss encountered")
loss.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
metrics.update(step_metrics)
if i != 0 and i % log_freq == 0:
metrics_dict = metrics.get_metrics()
if run is not None:
step = (epoch * num_training_batches) + i
if run.sweep_id is not None:
run.log(
{"loss": metrics_dict["loss"]},
commit=False,
)
run.log(
{"step": step},
commit=False,
)
run.log(utils.prefix_keys(metrics_dict, "finetune_step"), commit=True)
# Finished a single full step!
i += 1
if clip_grad is not None:
for h in hook_handles:
h.remove()
return metrics.get_metrics()
def build_train_loader(
dataset_path: str,
num_workers: int,
batch_size: int,
augmentation: Optional[bool] = True,
target_config: Optional[Dict] = None,
**kwargs,
) -> DataLoader:
"""Builds the train dataloader from a config file.
Args:
dataset_path: Dataset path.
num_workers: The number of workers for each dataset.
batch_size: The batch_size config for each dataset.
augmentation: If rotation augmentation is used.
target_config: The target config.
Returns:
The train Dataloader.
"""
log_train = "Loading train datasets:\n"
dataset = AseSqliteDataset(
dataset_path, target_config=target_config, augmentation=augmentation, **kwargs
)
log_train += f"Total train dataset size: {len(dataset)} samples"
logging.info(log_train)
sampler = RandomSampler(dataset)
batch_sampler = BatchSampler(
sampler,
batch_size=batch_size,
drop_last=False,
)
train_loader: DataLoader = DataLoader(
dataset,
num_workers=num_workers,
worker_init_fn=utils.worker_init_fn,
collate_fn=base.batch_graphs,
batch_sampler=batch_sampler,
timeout=10 * 60 if num_workers > 0 else 0,
)
return train_loader
def run(args):
"""Training Loop.
Args:
config (DictConfig): Config for training loop.
"""
device = utils.init_device(device_id=args.device_id)
utils.seed_everything(args.random_seed)
# Make sure to use this flag for matmuls on A100 and H100 GPUs.
torch.set_float32_matmul_precision("high")
# Instantiate model
model = pretrained.orb_v2(device=device)
for param in model.parameters():
param.requires_grad = True
model_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Model has {model_params} trainable parameters.")
# Move model to correct device.
model.to(device=device)
total_steps = args.max_epochs * args.num_steps
optimizer, lr_scheduler = utils.get_optim(args.lr, total_steps, model)
wandb_run = None
# Logger instantiation/configuration
if args.wandb:
logging.info("Instantiating WandbLogger.")
wandb_run = init_wandb_from_config(
dataset=args.dataset, job_type="finetuning", entity=args.wandb_entity
)
wandb.define_metric("step")
wandb.define_metric("finetune_step/*", step_metric="step")
loader_args = dict(
dataset_path=args.data_path,
num_workers=args.num_workers,
batch_size=args.batch_size,
target_config={"graph": ["energy", "stress"], "node": ["forces"]},
)
train_loader = build_train_loader(
**loader_args,
augmentation=True,
)
logging.info("Starting training!")
num_steps = args.num_steps
start_epoch = 0
for epoch in range(start_epoch, args.max_epochs):
print(f"Start epoch: {epoch} training...")
finetune(
model=model,
optimizer=optimizer,
dataloader=train_loader,
lr_scheduler=lr_scheduler,
clip_grad=args.gradient_clip_val,
device=device,
num_steps=num_steps,
epoch=epoch,
)
# Save every 5 epochs and final epoch
if (epoch % args.save_every_x_epochs == 0) or (epoch == args.max_epochs - 1):
# create ckpts folder if it does not exist
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path)
torch.save(
model.state_dict(),
os.path.join(args.checkpoint_path, f"checkpoint_epoch{epoch}.ckpt"),
)
logging.info(f"Checkpoint saved to {args.checkpoint_path}")
if wandb_run is not None:
wandb_run.finish()
def main():
"""Main."""
parser = argparse.ArgumentParser(
description="Finetune orb model",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--random_seed", default=1234, type=int, help="Random seed for finetuning."
)
parser.add_argument(
"--device_id", default=0, type=int, help="GPU index to use if GPU is available."
)
parser.add_argument(
"--wandb",
default=True,
action="store_true",
help="If the run is logged to Weights and Biases (requires installation).",
)
parser.add_argument(
"--wandb_entity",
default="orbitalmaterials",
type=str,
help="Entity to log the run to in Weights and Biases.",
)
parser.add_argument(
"--dataset",
default="mp-traj",
type=str,
help="Dataset name for wandb run logging.",
)
parser.add_argument(
"--data_path",
default=os.path.join(os.getcwd(), "datasets/mptraj/finetune.db"),
type=str,
help="Dataset path to an ASE sqlite database (you must convert your data into this format).",
)
parser.add_argument(
"--num_workers",
default=8,
type=int,
help="Number of cpu workers for the pytorch data loader.",
)
parser.add_argument(
"--batch_size", default=100, type=int, help="Batch size for finetuning."
)
parser.add_argument(
"--gradient_clip_val", default=0.5, type=float, help="Gradient clip value."
)
parser.add_argument(
"--max_epochs",
default=50,
type=int,
help="Maximum number of epochs to finetune.",
)
parser.add_argument(
"--save_every_x_epochs",
default=5,
type=int,
help="Save model every x epochs.",
)
parser.add_argument(
"--num_steps",
default=100,
type=int,
help="Num steps of in each epoch.",
)
parser.add_argument(
"--checkpoint_path",
default=os.path.join(os.getcwd(), "ckpts"),
type=str,
help="Path to save the model checkpoint.",
)
parser.add_argument(
"--lr",
default=3e-04,
type=float,
help="Learning rate. 3e-4 is purely a sensible default; you may want to tune this for your problem.",
)
args = parser.parse_args()
run(args)
if __name__ == "__main__":
main()