-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathutils.py
44 lines (36 loc) · 1.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import sklearn.metrics
import torch
from torchvision import transforms
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
inv_normalize = transforms.Normalize(
mean=[-0.485 / .229, -0.456 / 0.224, -0.406 / 0.255],
std=[1 / 0.229, 1 / 0.224, 1 / 0.255]
)
# Simple tensor to image translation
def tensor2img(tensor):
img = tensor.cpu().data[0]
if img.shape[0] != 1:
img = inv_normalize(img)
img = torch.clamp(img, 0, 1)
return img
# Define printing to console and file
def print_both(f, text):
print(text)
f.write(text + '\n')
# Metrics class was copied from DCEC article authors repository (link in README)
class metrics:
nmi = sklearn.metrics.normalized_mutual_info_score
ari = sklearn.metrics.adjusted_rand_score
@staticmethod
def acc(labels_true, labels_pred):
labels_true = labels_true.astype(np.int64)
assert labels_pred.size == labels_true.size
D = max(labels_pred.max(), labels_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(labels_pred.size):
w[labels_pred[i], labels_true[i]] += 1
from sklearn.utils.linear_assignment_ import linear_assignment
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind]) * 1.0 / labels_pred.size