-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
174 lines (138 loc) · 7.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
----------------------------------------------------------------------------------------
Copyright (c) 2022 - Michael Fonder, University of Liège (ULiège), Belgium.
This program is free software: you can redistribute it and/or modify it under the terms
of the GNU Affero General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this
program. If not, see < [ https://www.gnu.org/licenses/ | https://www.gnu.org/licenses/ ] >.
----------------------------------------------------------------------------------------
"""
import os
import argparse
from m4depth_options import M4DepthOptions
cmdline = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
model_opts = M4DepthOptions(cmdline)
cmd, test_args = cmdline.parse_known_args()
if cmd.mode == 'eval':
os.environ['TF_XLA_FLAGS'] = '--tf_xla_auto_jit=2 --tf_xla_cpu_global_jit'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
from tensorflow import keras
import numpy as np
import dataloaders as dl
from callbacks import *
from m4depth_network import *
from metrics import *
import time
if __name__ == '__main__':
cmdline = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
model_opts = M4DepthOptions(cmdline)
cmd, test_args = cmdline.parse_known_args()
# configure tensorflow gpus
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
enable_validation = cmd.enable_validation
try:
# Manage GPU memory to be able to run the validation step in parallel on the same GPU
if cmd.mode == "validation":
print('limit memory')
tf.config.set_logical_device_configuration(physical_devices[0],
[tf.config.LogicalDeviceConfiguration(memory_limit=1200)])
except:
# Invalid device or cannot modify virtual devices once initialized.
print("GPUs initialization failed")
enable_validation = False
pass
working_dir = os.getcwd()
print("The current working directory is : %s" % working_dir)
chosen_dataloader = dl.get_loader(cmd.dataset)
seq_len = cmd.seq_len
nbre_levels = cmd.arch_depth
ckpt_dir = cmd.ckpt_dir
if cmd.mode == 'train' or cmd.mode == 'finetune':
print("Training on %s" % cmd.dataset)
tf.random.set_seed(42)
chosen_dataloader.get_dataset("train", model_opts.dataloader_settings, batch_size=cmd.batch_size)
data = chosen_dataloader.dataset
model = M4Depth(depth_type=chosen_dataloader.depth_type,
nbre_levels=nbre_levels,
ablation_settings=model_opts.ablation_settings,
is_training=True)
# Initialize callbacks
tensorboard_cbk = keras.callbacks.TensorBoard(
log_dir=cmd.log_dir, histogram_freq=1200, write_graph=True,
write_images=False, update_freq=1200,
profile_batch=0, embeddings_freq=0, embeddings_metadata=None)
model_checkpoint_cbk = CustomCheckpointCallback(os.path.join(ckpt_dir,"train"), resume_training=True)
opt = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=opt, metrics=[RootMeanSquaredLogError()])
if enable_validation:
val_cbk = [CustomKittiValidationCallback(cmd, args=test_args)]
else:
val_cbk = []
# Adapt number of steps depending on desired usecase
if cmd.mode == 'finetune':
nbre_epochs = model_checkpoint_cbk.resume_epoch + (20000 // chosen_dataloader.length)
else:
nbre_epochs = (220000 // chosen_dataloader.length)
model.fit(data, epochs= nbre_epochs + 1,
initial_epoch=model_checkpoint_cbk.resume_epoch,
callbacks=[tensorboard_cbk, model_checkpoint_cbk] + val_cbk)
elif cmd.mode == 'eval' or cmd.mode == 'validation':
if cmd.mode=="validation":
weights_dir = os.path.join(ckpt_dir,"train")
else:
weights_dir = os.path.join(ckpt_dir,"best")
print("Evaluating on %s" % cmd.dataset)
chosen_dataloader.get_dataset("eval", model_opts.dataloader_settings, batch_size=1)
data = chosen_dataloader.dataset
tb_callback = tf.keras.callbacks.TensorBoard(log_dir=cmd.log_dir, profile_batch='10, 25')
model = M4Depth(nbre_levels=nbre_levels, ablation_settings=model_opts.ablation_settings)
model_checkpoint_cbk = CustomCheckpointCallback(weights_dir, resume_training=True)
model.compile(metrics=[AbsRelError(),
SqRelError(),
RootMeanSquaredError(),
RootMeanSquaredLogError(),
ThresholdRelError(1), ThresholdRelError(2), ThresholdRelError(3)])
metrics = model.evaluate(data, callbacks=[model_checkpoint_cbk])
# Keep track of the computed performance
if cmd.mode == 'validation':
manager = BestCheckpointManager(os.path.join(ckpt_dir,"train"), os.path.join(ckpt_dir,"best"), keep_top_n=cmd.keep_top_n)
perfs = {"abs_rel": [metrics[0]], "sq_rel": [metrics[1]], "rmse": [metrics[2]], "rmsel": [metrics[3]],
"a1": [metrics[4]], "a2": [metrics[5]], "a3": [metrics[6]]}
manager.update_backup(perfs)
string = ''
for perf in metrics:
string += format(perf, '.4f') + "\t\t"
with open(os.path.join(*[ckpt_dir, "validation-perfs.txt"]), 'a') as file:
file.write(string + '\n')
else:
np.savetxt(os.path.join(*[ckpt_dir, "perfs-" + cmd.dataset + ".txt"]), metrics, fmt='%.18e', delimiter='\t',
newline='\n')
elif cmd.mode == "predict":
chosen_dataloader.get_dataset("predict", model_opts.dataloader_settings, batch_size=1)
data = chosen_dataloader.dataset
model = M4Depth(nbre_levels=nbre_levels, ablation_settings=model_opts.ablation_settings)
model.compile()
model_checkpoint_cbk = CustomCheckpointCallback(os.path.join(ckpt_dir, "best"), resume_training=True)
first_sample = data.take(1)
model.predict(first_sample, callbacks=[model_checkpoint_cbk])
is_first_run = True
# Do what you want with the outputs
for i, sample in enumerate(data):
if not is_first_run and sample["new_traj"]:
print("End of trajectory")
is_first_run = False
est = model([[sample], sample["camera"]]) # Run network to get estimates
d_est = est["depth"][0, :, :, :] # Estimate : [h,w,1] matrix with depth in meter
d_gt = sample['depth'][0, :, :, :] # Ground truth : [h,w,1] matrix with depth in meter
i_rgb = sample['RGB_im'][0, :, :, :] # RGB image : [h,w,3] matrix with rgb channels ranging between 0 and 1