-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMPL.py
359 lines (268 loc) · 14.3 KB
/
MPL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import wandb
from torch.autograd import Variable
import numpy as np
import torch.cuda.amp as amp
import time
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from dataset.cityscapes_dataset import cityscapesDataSet
from utils import poly_lr_scheduler,reverse_one_hot, compute_global_accuracy, fast_hist, per_class_iu, best_model, create_meta_pseudo_labels, build_pretrained_model, compute_loss, uda_loss
from dataset.gta5_dataset import gta5DataSet
from arguments import get_args
from model.build_BiSeNet import BiSeNet
from model.discriminator_dsc import DSCDiscriminator
import torch.optim as optim
# Meta Pseudo Label training function
def train(args, teacher_G, teacher_G_opt, teacher_G_scaler,
teacher_D, teacher_D_opt, teacher_D_scaler,
student_G, student_G_opt, student_G_scaler,
student_D, student_D_opt, student_D_scaler,
stud_lr, teacher_lr, epoch,
training_dataloader_source, training_dataloader_target, dataloader_val):
# Loss definitions
bce_loss = torch.nn.BCEWithLogitsLoss()
loss_fn = torch.nn.CrossEntropyLoss(ignore_index=255)
source_iter = enumerate(training_dataloader_source)
target_iter = enumerate(training_dataloader_target)
sup_stud_loss = list()
unsup_stud_loss = list()
sup_teacher_loss = list()
unsup_teacher_loss = list()
teacher_tot_loss = list()
source_label = 0
target_label = 1
i=0
for batch_target, batch_source in zip(target_iter,source_iter):
i+=1
if (i*4) % 100 == 0:
print(f"Epoch:{epoch}, Batch: {i*4}/500")
teacher_G_opt.zero_grad()
teacher_D_opt.zero_grad()
student_G_opt.zero_grad()
student_D_opt.zero_grad()
# Sample an unlabelled example x_u and sample a labelled example (x_l, y_l)
_, (x_source, y_source, _, _) = batch_source
_, (x_target, _, _, name) = batch_target
# Put everything on cuda
x_target = x_target.cuda()
x_source = x_source.cuda()
y_source = y_source.long().cuda()
y_source = y_source.detach()
# 1) Create pseudolabels
y_pl = create_meta_pseudo_labels(teacher_G, args, x_target, name, epoch)
y_pl = y_pl.long().cuda()
y_pl = y_pl.detach()
# Set networks in training mode
student_G.train()
teacher_G.train()
# Freeze discriminators
for param_stud, param_teacher in zip(student_D.parameters(), teacher_D.parameters()):
param_stud.requires_grad = False
param_teacher.requires_grad = False
# 2) Compute supervised loss student
seg_loss_source_stud, output_stud_source = compute_loss(student_G, x_source, y_source, loss_fn)
student_G_scaler.scale(seg_loss_source_stud).backward()
# 3) Compute unsupervised loss student
seg_loss_target_stud, output_stud_target = compute_loss(student_G, x_target, y_pl, loss_fn)
with amp.autocast():
D_out = student_D(F.softmax(output_stud_target, dim=1))
loss_adversarial = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
loss_target = args.lambda_adv * loss_adversarial + seg_loss_target_stud #LOSS ADVERSARIAL
# Update Student parameters
student_G_scaler.scale(loss_target).backward()
# 4) Train discriminator
for param in student_D.parameters():
param.requires_grad = True
with amp.autocast():
output_source = output_stud_source.detach()
D_out = student_D(F.softmax(output_source, dim =1))
loss_D_source_stud = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
output_target = output_stud_target.detach()
D_out = student_D(F.softmax(output_target, dim=1))
loss_D_target_stud = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(target_label)).cuda())
loss_D = loss_D_source_stud/2 + loss_D_target_stud/2
student_D_scaler.scale(loss_D).backward()
student_D_scaler.step(student_D_opt)
student_G_scaler.step(student_G_opt)
student_G_scaler.update()
student_D_scaler.update()
# 5) Compute H
H = stud_lr * seg_loss_target_stud.detach() * seg_loss_source_stud.detach()
alpha = np.exp(epoch/40) - 1
if epoch == 0:
alpha = 1/H
if epoch > 25:
alpha = 1
H = alpha * H
# 6) Compute supervised loss teacher
seg_loss_source_teacher, output_teacher_source = compute_loss(teacher_G, x_source, y_source, loss_fn)
# 7) Compute unsupervised loss teacher
seg_loss_target_teacher, output_teacher_target = compute_loss(teacher_G, x_target, y_pl, loss_fn)
H = H.detach()
#print(H.item())
#teacher_G_scaler.scale(seg_loss_source_teacher).backward()
uda_loss_teacher = uda_loss(teacher_G, x_target, y_pl, loss_fn)
with amp.autocast():
D_out = teacher_D(F.softmax(output_teacher_target, dim=1))
loss_adversarial = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
loss_teacher = seg_loss_source_teacher + loss_adversarial + (H * seg_loss_target_teacher) + uda_loss_teacher #LOSS ADVERSARIAL
# 3) Update Teacher parameters
teacher_G_scaler.scale(loss_teacher).backward()
# Train discriminator
for param in teacher_D.parameters():
param.requires_grad = True
with amp.autocast():
output_source = output_stud_source.detach()
D_out = teacher_D(F.softmax(output_source, dim =1))
loss_D_source_teacher= bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
output_target = output_stud_target.detach()
D_out = teacher_D(F.softmax(output_target, dim=1))
loss_D_target_teacher = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(target_label)).cuda())
loss_D = loss_D_source_teacher/2 + loss_D_target_teacher/2
teacher_D_scaler.scale(loss_D).backward()
teacher_G_scaler.step(teacher_G_opt)
teacher_D_scaler.step(teacher_D_opt)
teacher_G_scaler.update()
teacher_D_scaler.update()
sup_stud_loss.append(seg_loss_source_stud.item())
unsup_stud_loss.append(seg_loss_target_stud.item())
sup_teacher_loss.append(seg_loss_target_teacher.item())
unsup_teacher_loss.append(seg_loss_target_teacher.item())
teacher_tot_loss.append(loss_teacher.item())
# Return stats of training
update_info = {
'epoch': epoch,
'stud_sup_loss': np.array(sup_stud_loss).mean(),
'stud_unsup_loss': np.array(unsup_stud_loss).mean(),
'teacher_sup_loss': np.array(sup_teacher_loss).mean(),
'teacher_unsup_loss': np.array(unsup_teacher_loss).mean(),
'teacher_tot_loss': np.array(teacher_tot_loss).mean()
}
return update_info, teacher_G, teacher_G_opt, teacher_D, teacher_D_opt, student_G, student_G_opt, student_D, student_D_opt
# Function to test the model
def test(args, model, dataloader):
print("Start validation!")
with torch.no_grad():
model.eval()
precision_record = []
hist = np.zeros((args.num_classes, args.num_classes))
for i, (data,label,_,_) in enumerate(dataloader):
label = label.type(torch.LongTensor)
data = data.cuda()
label = label.long().cuda()
# get RGB predict image
predict = model(data).squeeze()
predict = reverse_one_hot(predict)
predict = np.array(predict.cpu())
# get RGB label image
label = label.squeeze()
if args.loss == 'dice':
label = reverse_one_hot(label)
label = np.array(label.cpu())
# compute per pixel accuracy
precision = compute_global_accuracy(predict, label)
hist += fast_hist(label.flatten(), predict.flatten(), args.num_classes)
precision_record.append(precision)
precision = np.mean(precision_record)
miou_list = per_class_iu(hist)
miou = np.mean(miou_list)
print('precision per pixel for test: %.3f' % precision)
print('mIoU for validation: %.3f' % miou)
print(f'mIoU per class: {miou_list}')
return precision, miou
# The main function
def main(params):
args, img_mean = get_args(params)
max_miou = 0.3
run_id = int(time.time())
# Use wandb to store stats
wandb.init(project="segmentation",
name=f'Segmentation-MetapseudoLabels-{str(run_id)}',
group=f'Segmentation-MetapseudoLabels',
config=args)
# Instanciate dataloaders
training_dataset_target = cityscapesDataSet(args.dataset, args.data_train, crop_size=(args.crop_width , args.crop_height), encodeseg=0)
training_dataloader_target = DataLoader(training_dataset_target,
batch_size= args.batch_size,
shuffle=True,
num_workers = args.num_workers,
drop_last=True )
training_dataset_source = gta5DataSet(args.source, args.path_source, crop_size=(1280,720))
training_dataloader_source = DataLoader(training_dataset_source,
batch_size=args.batch_size,
shuffle=True,
num_workers = args.num_workers,
drop_last=True)
dataset_val = cityscapesDataSet(args.dataset, args.val, crop_size=(args.crop_width , args.crop_height), encodeseg=1)
dataloader_val = DataLoader(dataset_val,
shuffle=True ,
num_workers = args.num_workers,
batch_size=1
)
# Instanciate scalers
student_G_scaler = amp.GradScaler()
student_D_scaler = amp.GradScaler()
teacher_G_scaler = amp.GradScaler()
teacher_D_scaler = amp.GradScaler()
#student not pretreined, teacher pretreined
# Instanciate models
student_G = BiSeNet(args.num_classes, args.context_path)
student_D = DSCDiscriminator(num_classes=args.num_classes)
if torch.cuda.is_available() and args.use_gpu:
student_G = torch.nn.DataParallel(student_G).cuda()
student_D = torch.nn.DataParallel(student_D).cuda()
student_D_opt = optim.Adam(student_D.parameters(), lr=args.learning_rateD, betas=(0.9, 0.99))
student_G_opt = torch.optim.SGD(student_G.parameters(), args.learning_rate, momentum=0.9, weight_decay=1e-4)
teacher_G, teacher_G_opt, teacher_D, teacher_D_opt = build_pretrained_model(args)
teacher_G_opt = torch.optim.SGD(teacher_G.parameters(), args.learning_rate, momentum=0.9, weight_decay=1e-4)
teacher_D_opt = optim.Adam(teacher_D.parameters(), lr=args.learning_rateD, betas=(0.9, 0.99)) #torch.optim.SGD(student_G.parameters(), args.learning_rate, momentum=0.9, weight_decay=1e-4)
print("------Training started------")
for epoch in range(args.num_epochs):
stud_lr = poly_lr_scheduler(student_G_opt,
args.learning_rate,
iter=epoch,
max_iter=args.num_epochs)
teacher_lr = poly_lr_scheduler(teacher_G_opt,
1.25e-2,
iter=epoch,
max_iter=args.num_epochs)
train_info, teacher_G, teacher_G_opt, teacher_D, teacher_D_opt, student_G, student_G_opt, student_D, student_D_opt =train(args, teacher_G, teacher_G_opt, teacher_G_scaler,
teacher_D, teacher_D_opt, teacher_D_scaler,
student_G, student_G_opt, student_G_scaler,
student_D, student_D_opt, student_D_scaler,
stud_lr, teacher_lr, epoch,
training_dataloader_source, training_dataloader_target, dataloader_val)
wandb.log(train_info)
if (epoch + 1) % 1 == 0 and epoch>0:
prec, miou = test(args, student_G, dataloader_val)
test_info = {"epoch": epoch, "precision": prec, "miou": miou}
wandb.log(test_info)
if miou > max_miou:
print("Model saved!")
max_miou = miou
os.makedirs(args.save_model_path, exist_ok=True)
best_model(args, student_G, student_G_opt, student_D, student_D_opt, epoch + 50, "best_stud")
best_model(args, teacher_G, teacher_G_opt, teacher_D, teacher_D_opt, epoch + 50, "best_teacher")
print("------Training finished------")
# Entry point of the script
if __name__ == "__main__":
params = [
'--use_meta_pseudo_labels',' 0',
'--num_epochs', '50',
'--learning_rate', '2.5e-4',
'--data_train', './dataset/data/Cityscapes/train.txt',
'--data_val', './dataset/data/Cityscapes/val.txt',
'--num_workers', '4',
'--num_classes', '19',
'--cuda', '0',
'--batch_size', '4',
'--save_model_path', './checkpoints_101_sgd',
'--context_path', 'resnet101', # set resnet18 or resnet101, only support resnet18 and resnet101
'--optimizer', 'sgd',
'--Discriminator', '1',
'--checkpoint_name_save','model_output.pth',
'--checkpoint_name_load','model_output_ssl_best_model_.pth'
]
main(params)