diff --git a/R/methods-ComputeResult.R b/R/methods-ComputeResult.R index 46cbf52..d9d3826 100644 --- a/R/methods-ComputeResult.R +++ b/R/methods-ComputeResult.R @@ -90,7 +90,12 @@ mergeComputeResultAndMetadata <- function(computeResult, dataset, metadataVariab #' method='shannon', #' verbose=FALSE #' ) -#' alphaDivDT <- getComputeResultWithMetadata(alphaDivOutput, microbiomeData::DiabImmune, metadataVariables = c('country', 'delivery_mode')) +#' +#' alphaDivDT <- getComputeResultWithMetadata( +#' alphaDivOutput, +#' microbiomeData::DiabImmune, +#' metadataVariables = c('country', 'delivery_mode') +#' ) #' @param object A Microbiome Dataset #' @param dataset The MbioDataset, AbundanceData or Collection object from which the compute result was obtained. #' @param format The format you want the compute result in. Currently only "data.table" is supported. diff --git a/R/methods-MbioDataset.R b/R/methods-MbioDataset.R index 90ecccb..6ec6611 100644 --- a/R/methods-MbioDataset.R +++ b/R/methods-MbioDataset.R @@ -133,11 +133,31 @@ setMethod("updateCollectionName", "MbioDataset", function(object, oldName, newNa #' Get a collection from the Microbiome Dataset. The collection will be returned #' as an AbundanceData, phyloseq, or Collection object. #' -#' @examples -#' genus <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus") -#' genus_phyloseq <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", format = "phyloseq") -#' genus_continuous <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", continuousMetadataOnly = TRUE) ## to pass to correlation method -#' genus_collection <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", format = "Collection") ## with no metadata +#' @examples +#' genus <- getCollection( +#' microbiomeData::DiabImmune, +#' "16S (V4) Genus" +#' ) +#' +#' genus_phyloseq <- getCollection( +#' microbiomeData::DiabImmune, +#' "16S (V4) Genus", +#' format = "phyloseq" +#' ) +#' +#' ## to pass to correlation method, we want only continuous metadata +#' genus_continuous <- getCollection( +#' microbiomeData::DiabImmune, +#' "16S (V4) Genus", +#' continuousMetadataOnly = TRUE +#' ) +#' +#' ## with no metadata +#' genus_collection <- getCollection( +#' microbiomeData::DiabImmune, +#' "16S (V4) Genus", +#' format = "Collection" +#' ) #' @param object A Microbiome Dataset #' @param collectionName The name of the collection to return #' @param format The format of the collection to return. Currently supported options are "AbundanceData", "phyloseq" and "Collection". diff --git a/R/reexports-microbiomeComputations.R b/R/reexports-microbiomeComputations.R index ec3e1bf..3ad2fab 100644 --- a/R/reexports-microbiomeComputations.R +++ b/R/reexports-microbiomeComputations.R @@ -3,7 +3,10 @@ #' This function returns abundances, ranked by a selected ranking function #' #' @examples -#' rankedAbundOutput <- rankedAbundance(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "median") +#' rankedAbundOutput <- rankedAbundance( +#' getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), +#' method = "median" +#' ) #' @param data AbundanceData object #' @param method string defining the ranking strategy by which to order the taxa. Accepted values are 'median','max','q3',and 'variance'. Note that taxa that return a value of 0 for a given method will not be included in the results. #' @param cutoff integer indicating the maximium number of taxa to be kept after ranking. @@ -19,7 +22,10 @@ microbiomeComputations::rankedAbundance #' This function returns alpha diversity values for each sample. #' #' @examples -#' alphaDivOutput <- alphaDiv(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "shannon") +#' alphaDivOutput <- alphaDiv( +#' getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), +#' method = "shannon" +#' ) #' @param data AbundanceData object #' @param method string defining the the alpha diversity method. Accepted values are 'shannon','simpson', and 'evenness' #' @param verbose boolean indicating if timed logging is desired @@ -34,7 +40,11 @@ microbiomeComputations::alphaDiv #' This function returns pcoa coordinates calculated from the beta diversity dissimilarity matrix. #' #' @examples -#' betaDivOutput <- betaDiv(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "bray", k = 2) +#' betaDivOutput <- betaDiv( +#' getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), +#' method = "bray", +#' k = 2 +#' ) #' @param data AbundanceData object #' @param method string defining the the beta diversity dissimilarity method. Accepted values are 'bray','jaccard', and 'jsd' #' @param k integer determining the number of pcoa axes to return @@ -50,10 +60,28 @@ microbiomeComputations::betaDiv #' This function returns correlation coefficients for variables in one dataset against variables in a second dataset #' #' @examples -#' diabImmune_genus <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", continuousMetadataOnly = TRUE) -#' correlationDT <- correlation(diabImmune_genus, method = 'spearman', format = 'data.table') -#' correlationOutput <- correlation(diabImmune_genus, method = 'spearman', format = 'ComputeResult') -#' alsoCorrelationDT <- getComputeResult(correlationOutput, "data.table") +#' diabImmune_genus <- getCollection( +#' microbiomeData::DiabImmune, +#' "16S (V4) Genus", +#' continuousMetadataOnly = TRUE +#' ) +#' +#' correlationDT <- correlation( +#' diabImmune_genus, +#' method = 'spearman', +#' format = 'data.table' +#' ) +#' +#' correlationOutput <- correlation( +#' diabImmune_genus, +#' method = 'spearman', +#' format = 'ComputeResult' +#' ) +#' +#' alsoCorrelationDT <- getComputeResult( +#' correlationOutput, +#' "data.table" +#' ) #' @param data1 first dataset. A data.table #' @param data2 second dataset. A data.table #' @param method string defining the type of correlation to run. @@ -74,9 +102,22 @@ veupathUtils::correlation #' convenience wrapper around veupathUtils::correlation, with the exception that it additionally supports sparcc. #' #' @examples -#' correlationDT <- selfCorrelation(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = 'sparcc', format = 'data.table') -#' correlationOutput <- selfCorrelation(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = 'sparcc', format = 'ComputeResult') -#' alsoCorrelationDT <- getComputeResult(correlationOutput, "data.table") +#' correlationDT <- selfCorrelation( +#' getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), +#' method = 'sparcc', +#' format = 'data.table' +#' ) +#' +#' correlationOutput <- selfCorrelation( +#' getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), +#' method = 'sparcc', +#' format = 'ComputeResult' +#' ) +#' +#' alsoCorrelationDT <- getComputeResult( +#' correlationOutput, +#' "data.table" +#' ) #' @param data An AbundanceData object #' @param method string defining the type of correlation to run. The currently supported values are 'spearman','pearson' and 'sparcc' #' @param format string defining the desired format of the result. The currently supported values are 'data.table' and 'ComputeResult'. diff --git a/man/alphaDiv-methods.Rd b/man/alphaDiv-methods.Rd index aac6518..61e9362 100644 --- a/man/alphaDiv-methods.Rd +++ b/man/alphaDiv-methods.Rd @@ -24,5 +24,8 @@ ComputeResult object This function returns alpha diversity values for each sample. } \examples{ -alphaDivOutput <- alphaDiv(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "shannon") +alphaDivOutput <- alphaDiv( + getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), + method = "shannon" +) } diff --git a/man/betaDiv-methods.Rd b/man/betaDiv-methods.Rd index 7cd9852..d70ac6a 100644 --- a/man/betaDiv-methods.Rd +++ b/man/betaDiv-methods.Rd @@ -27,5 +27,9 @@ ComputeResult object This function returns pcoa coordinates calculated from the beta diversity dissimilarity matrix. } \examples{ -betaDivOutput <- betaDiv(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "bray", k = 2) +betaDivOutput <- betaDiv( + getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), + method = "bray", + k = 2 +) } diff --git a/man/correlation-methods.Rd b/man/correlation-methods.Rd index 41b360a..a344034 100644 --- a/man/correlation-methods.Rd +++ b/man/correlation-methods.Rd @@ -35,8 +35,26 @@ data.frame with correlation coefficients or a ComputeResult object This function returns correlation coefficients for variables in one dataset against variables in a second dataset } \examples{ -diabImmune_genus <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", continuousMetadataOnly = TRUE) -correlationDT <- correlation(diabImmune_genus, method = 'spearman', format = 'data.table') -correlationOutput <- correlation(diabImmune_genus, method = 'spearman', format = 'ComputeResult') -alsoCorrelationDT <- getComputeResult(correlationOutput, "data.table") +diabImmune_genus <- getCollection( + microbiomeData::DiabImmune, + "16S (V4) Genus", + continuousMetadataOnly = TRUE +) + +correlationDT <- correlation( + diabImmune_genus, + method = 'spearman', + format = 'data.table' +) + +correlationOutput <- correlation( + diabImmune_genus, + method = 'spearman', + format = 'ComputeResult' +) + +alsoCorrelationDT <- getComputeResult( + correlationOutput, + "data.table" +) } diff --git a/man/getCollection.Rd b/man/getCollection.Rd index fff77bd..c9a9f3f 100644 --- a/man/getCollection.Rd +++ b/man/getCollection.Rd @@ -37,8 +37,28 @@ Get a collection from the Microbiome Dataset. The collection will be returned as an AbundanceData, phyloseq, or Collection object. } \examples{ -genus <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus") -genus_phyloseq <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", format = "phyloseq") -genus_continuous <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", continuousMetadataOnly = TRUE) ## to pass to correlation method -genus_collection <- getCollection(microbiomeData::DiabImmune, "16S (V4) Genus", format = "Collection") ## with no metadata +genus <- getCollection( + microbiomeData::DiabImmune, + "16S (V4) Genus" +) + +genus_phyloseq <- getCollection( + microbiomeData::DiabImmune, + "16S (V4) Genus", + format = "phyloseq" +) + +## to pass to correlation method, we want only continuous metadata +genus_continuous <- getCollection( + microbiomeData::DiabImmune, + "16S (V4) Genus", + continuousMetadataOnly = TRUE +) + +## with no metadata +genus_collection <- getCollection( + microbiomeData::DiabImmune, + "16S (V4) Genus", + format = "Collection" +) } diff --git a/man/getComputeResultWithMetadata.Rd b/man/getComputeResultWithMetadata.Rd index de6eb36..7e7ce69 100644 --- a/man/getComputeResultWithMetadata.Rd +++ b/man/getComputeResultWithMetadata.Rd @@ -56,5 +56,10 @@ alphaDivOutput <- MicrobiomeDB::alphaDiv( method='shannon', verbose=FALSE ) -alphaDivDT <- getComputeResultWithMetadata(alphaDivOutput, microbiomeData::DiabImmune, metadataVariables = c('country', 'delivery_mode')) + +alphaDivDT <- getComputeResultWithMetadata( + alphaDivOutput, + microbiomeData::DiabImmune, + metadataVariables = c('country', 'delivery_mode') +) } diff --git a/man/rankedAbundance-methods.Rd b/man/rankedAbundance-methods.Rd index 6e62df3..f51194c 100644 --- a/man/rankedAbundance-methods.Rd +++ b/man/rankedAbundance-methods.Rd @@ -27,5 +27,8 @@ ComputeResult object This function returns abundances, ranked by a selected ranking function } \examples{ -rankedAbundOutput <- rankedAbundance(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = "median") +rankedAbundOutput <- rankedAbundance( + getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), + method = "median" +) } diff --git a/man/selfCorrelation-methods.Rd b/man/selfCorrelation-methods.Rd index 290b21c..36b6b8f 100644 --- a/man/selfCorrelation-methods.Rd +++ b/man/selfCorrelation-methods.Rd @@ -31,7 +31,20 @@ This function returns correlation coefficients for variables in one AbundanceDat convenience wrapper around veupathUtils::correlation, with the exception that it additionally supports sparcc. } \examples{ -correlationDT <- selfCorrelation(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = 'sparcc', format = 'data.table') -correlationOutput <- selfCorrelation(getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), method = 'sparcc', format = 'ComputeResult') -alsoCorrelationDT <- getComputeResult(correlationOutput, "data.table") +correlationDT <- selfCorrelation( + getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), + method = 'sparcc', + format = 'data.table' +) + +correlationOutput <- selfCorrelation( + getCollection(microbiomeData::DiabImmune, "16S (V4) Genus"), + method = 'sparcc', + format = 'ComputeResult' +) + +alsoCorrelationDT <- getComputeResult( + correlationOutput, + "data.table" +) }