Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to achieve vLLM Row Parallelism correctly? #186

Open
KeremTurgutlu opened this issue Sep 18, 2024 · 5 comments
Open

How to achieve vLLM Row Parallelism correctly? #186

KeremTurgutlu opened this issue Sep 18, 2024 · 5 comments

Comments

@KeremTurgutlu
Copy link

KeremTurgutlu commented Sep 18, 2024

I am trying to make bitblas quantized weights to work with vLLM's tensor parallelism. In vLLM, tensor parallelism is achieved with column parallelism and row parallelism.

Similar to the reference vLLM integration here qweight, scales and zeros have the following shapes, input dims and output dims:

qweight = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_pack_factor,
                device="cuda",
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            qweight,
            {
                "input_dim": 1,
                "output_dim": 0,
                "packed_dim": 1,
                "pack_factor": self.layer_pack_factor,
            },
        )

        scales = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_group_size,
                device="cuda",
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            scales,
            {
                "input_dim": 1,
                "output_dim": 0,
            },
        )

        zeros = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_group_size,
                device="cuda",
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            zeros,
            {
                "input_dim": 1,
                "output_dim": 0,
            },
        )

Our vLLM bitblas integration can be found here.

Column Parallel

In column parallelism, parallelization is done along the weight's output dim and the outputs are concatenated along the output's output dim using an all gather operation. Testing this behavior with bitblas works as expected:

# Mimic the output without any tensor parallelism.
bitblas_output = matmul_eng(x, Wq_bitblas, scales_bitblas, zeros_bitblas)

# Reconfigure matmul eng for new dims:
matmul_config = bitblas.MatmulConfig(M=BITBLAS_OPT_M,
                                        N=out_features//2,
                                        K=in_features,
                                        A_dtype="float16",  
                                        W_dtype={4:"uint4",2:"uint2"}[NBITS],
                                        accum_dtype="float16",  
                                        out_dtype="float16",  
                                        layout="nt",  
                                        with_bias=False, 
                                        group_size=GROUPSIZE,
                                        with_scaling=True,  
                                        with_zeros=True,  
                                        zeros_mode="original",  
                                        #fast_decoding=True,
                                    )
matmul_eng = _get_or_create_bitblas_operator(matmul_config)		

# Split weights along the input dimenstion which is the 'N' dimension from matmul eq: (M x K @ K x N). 
Wq_bitblas_split_1, Wq_bitblas_split_2 = Wq_bitblas.split(split_size=Wq_bitblas.size(0) // 2, dim=0)
zeros_bitblas_split_1, zeros_bitblas_split_2 = zeros_bitblas.split(split_size=zeros_bitblas.size(0) // 2, dim=0)
scales_bitblas_split_1, scales_bitblas_split_2 = scales_bitblas.split(split_size=scales_bitblas.size(0) // 2, dim=0)
bitblas_output_split_1 = matmul_eng(x, Wq_bitblas_split_1, scales_bitblas_split_1, zeros_bitblas_split_1)
bitblas_output_split_2 = matmul_eng(x, Wq_bitblas_split_2, scales_bitblas_split_2, zeros_bitblas_split_2)

# Test passes.
bitblas_sharded_output = torch.cat([bitblas_output_split_1, bitblas_output_split_2], dim=1)
assert torch.allclose(bitblas_sharded_output, bitblas_output, atol=1e-2, rtol=1e-2)

Row Parallel

In row parallelism, parallelization is done along weight's input dim (K) and reduced (summed) along the via all reduce (sum) operation.

The outputs from the following test is very different compared to without tensor parallel.

# Mimic the output without any tensor parallelism.
bitblas_output = matmul_eng(x, Wq_bitblas, scales_bitblas, zeros_bitblas)

# Reconfigure matmul eng for new dims:
matmul_config = bitblas.MatmulConfig(M=BITBLAS_OPT_M,
                                        N=out_features,
                                        K=in_features//2,
                                        A_dtype="float16",  
                                        W_dtype={4:"uint4",2:"uint2"}[NBITS],
                                        accum_dtype="float16",  
                                        out_dtype="float16",  
                                        layout="nt",  
                                        with_bias=False, 
                                        group_size=GROUPSIZE,
                                        with_scaling=True,  
                                        with_zeros=True,  
                                        zeros_mode="original",  
                                        #fast_decoding=True,
                                    )
matmul_eng = _get_or_create_bitblas_operator(matmul_config)

# Split weights along the input dimenstion which is the 'K' dimension from matmul eq: (M x K @ K x N). 
Wq_bitblas_split_1, Wq_bitblas_split_2 = Wq_bitblas.split(split_size=Wq_bitblas.size(1) // 2, dim=1)
zeros_bitblas_split_1, zeros_bitblas_split_2 = zeros_bitblas.split(split_size=zeros_bitblas.size(1) // 2, dim=1)
scales_bitblas_split_1, scales_bitblas_split_2 = scales_bitblas.split(split_size=scales_bitblas.size(1) // 2, dim=1)

# Also split the input along the K dimension.
x_1, x_2 = x.split(split_size=x.size(1) // 2, dim=1)

bitblas_output_split_1 = matmul_eng(x_1, Wq_bitblas_split_1, scales_bitblas_split_1, zeros_bitblas_split_1)
bitblas_output_split_2 = matmul_eng(x_2, Wq_bitblas_split_2, scales_bitblas_split_2, zeros_bitblas_split_2)

# Test fails
bitblas_sharded_output = bitblas_output_split_1 + bitblas_output_split_2
assert torch.allclose(bitblas_sharded_output, bitblas_output, atol=1e-2, rtol=1e-2)
Screenshot 2024-09-18 at 12 31 01 PM

Is there a wrong assumption here regarding the layout and/or packing? Maybe the zeros and scales are not correctly split? Appreciate your help. Thanks.

@LeiWang1999
Copy link
Contributor

@KeremTurgutlu ,Thanks for your reporting! I'll take a look soon

@LeiWang1999
Copy link
Contributor

@KeremTurgutlu Do we have a unit test script for us to reproduce? I can reproduce with tp=2 on a end2end model.

@KeremTurgutlu
Copy link
Author

Yes I think tp=2 should be a good start. Easiest would be to rerun the python code samples I shared in this issues because they isolate the issue to a single matmul rather than end2end model testing.

@KeremTurgutlu
Copy link
Author

@LeiWang1999 Anything else needed from my side? Thanks.

@LeiWang1999
Copy link
Contributor

@tzj-fxz thanks, I'm working on it, the last few days have been busy.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants