-
Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathsave_logits.py
335 lines (259 loc) · 11.3 KB
/
save_logits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# --------------------------------------------------------
# TinyViT Save Teacher Logits
# Copyright (c) 2022 Microsoft
# Based on the code: Swin Transformer
# (https://github.com/microsoft/swin-transformer)
# Save teacher logits
# --------------------------------------------------------
import os
import time
import random
import argparse
import datetime
from collections import defaultdict
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from timm.utils import accuracy
from my_meter import AverageMeter
from config import get_config
from models import build_model
from data import build_loader
from logger import create_logger
from utils import load_checkpoint, NativeScalerWithGradNormCount, add_common_args
from models.remap_layer import RemapLayer
remap_layer_22kto1k = RemapLayer('./imagenet_1kto22k.txt')
def parse_option():
parser = argparse.ArgumentParser(
'TinyViT saving sparse logits script', add_help=False)
add_common_args(parser)
parser.add_argument('--check-saved-logits',
action='store_true', help='Check saved logits')
parser.add_argument('--skip-eval',
action='store_true', help='Skip evaluation')
args = parser.parse_args()
config = get_config(args)
return args, config
def main(config):
dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(
config)
logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
model = build_model(config)
model.cuda()
logger.info(str(model))
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
model_without_ddp = model.module
n_parameters = sum(p.numel()
for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
optimizer = None
lr_scheduler = None
assert config.MODEL.RESUME
loss_scaler = NativeScalerWithGradNormCount()
load_checkpoint(config, model_without_ddp, optimizer,
lr_scheduler, loss_scaler, logger)
if not args.skip_eval and not args.check_saved_logits:
acc1, acc5, loss = validate(config, data_loader_val, model)
logger.info(
f"Accuracy of the network on the {len(dataset_val)} test images: top-1 acc: {acc1:.1f}%, top-5 acc: {acc5:.1f}%")
if args.check_saved_logits:
logger.info("Start checking logits")
else:
logger.info("Start saving logits")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
dataset_train.set_epoch(epoch)
data_loader_train.sampler.set_epoch(epoch)
if args.check_saved_logits:
check_logits_one_epoch(
config, model, data_loader_train, epoch, mixup_fn=mixup_fn)
else:
save_logits_one_epoch(
config, model, data_loader_train, epoch, mixup_fn=mixup_fn)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Saving logits time {}'.format(total_time_str))
@torch.no_grad()
def save_logits_one_epoch(config, model, data_loader, epoch, mixup_fn):
model.eval()
num_steps = len(data_loader)
batch_time = AverageMeter()
meters = defaultdict(AverageMeter)
start = time.time()
end = time.time()
topk = config.DISTILL.LOGITS_TOPK
logits_manager = data_loader.dataset.get_manager()
for idx, ((samples, targets), (keys, seeds)) in enumerate(data_loader):
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets, seeds)
original_targets = targets.argmax(dim=1)
else:
original_targets = targets
with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
outputs = model(samples)
acc1, acc5 = accuracy(outputs, original_targets, topk=(1, 5))
real_batch_size = len(samples)
meters['teacher_acc1'].update(acc1.item(), real_batch_size)
meters['teacher_acc5'].update(acc5.item(), real_batch_size)
# save teacher logits
softmax_prob = torch.softmax(outputs, -1)
torch.cuda.synchronize()
write_tic = time.time()
values, indices = softmax_prob.topk(
k=topk, dim=-1, largest=True, sorted=True)
cpu_device = torch.device('cpu')
values = values.detach().to(device=cpu_device, dtype=torch.float16)
indices = indices.detach().to(device=cpu_device, dtype=torch.int16)
seeds = seeds.numpy()
values = values.numpy()
indices = indices.numpy()
# check data type
assert seeds.dtype == np.int32, seeds.dtype
assert indices.dtype == np.int16, indices.dtype
assert values.dtype == np.float16, values.dtype
for key, seed, indice, value in zip(keys, seeds, indices, values):
bstr = seed.tobytes() + indice.tobytes() + value.tobytes()
logits_manager.write(key, bstr)
meters['write_time'].update(time.time() - write_tic)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
extra_meters_str = ''
for k, v in meters.items():
extra_meters_str += f'{k} {v.val:.4f} ({v.avg:.4f})\t'
logger.info(
f'Save: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'{extra_meters_str}'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(
f"EPOCH {epoch} save logits takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def check_logits_one_epoch(config, model, data_loader, epoch, mixup_fn):
model.eval()
num_steps = len(data_loader)
batch_time = AverageMeter()
meters = defaultdict(AverageMeter)
start = time.time()
end = time.time()
topk = config.DISTILL.LOGITS_TOPK
for idx, ((samples, targets), (saved_logits_index, saved_logits_value, seeds)) in enumerate(data_loader):
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets, seeds)
with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
outputs = model(samples)
softmax_prob = torch.softmax(outputs, -1)
torch.cuda.synchronize()
values, indices = softmax_prob.topk(
k=topk, dim=-1, largest=True, sorted=True)
meters['error'].update(
(values - saved_logits_value.cuda()).abs().mean().item())
meters['diff_rate'].update(torch.count_nonzero(
(indices != saved_logits_index.cuda())).item() / indices.numel())
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
extra_meters_str = ''
for k, v in meters.items():
extra_meters_str += f'{k} {v.val:.4f} ({v.avg:.4f})\t'
logger.info(
f'Check: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'{extra_meters_str}'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(
f"EPOCH {epoch} check logits takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model, num_classes=1000):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
output = model(images)
if num_classes == 1000:
output_num_classes = output.size(-1)
if output_num_classes == 21841:
output = remap_layer_22kto1k(output)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
acc1_meter.sync()
acc5_meter.sync()
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
args, config = parse_option()
config.defrost()
assert len(
config.DISTILL.TEACHER_LOGITS_PATH) > 0, "Please fill in the config DISTILL.TEACHER_LOGITS_PATH"
config.DISTILL.ENABLED = True
if not args.check_saved_logits:
config.DISTILL.SAVE_TEACHER_LOGITS = True
config.freeze()
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(
backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
# The seed changes with config, rank, world_size and epoch
seed = config.SEED + dist.get_rank() + config.TRAIN.START_EPOCH * \
dist.get_world_size()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT,
dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
main(config)