diff --git a/.github/workflows/nv-accelerate-v100.yml b/.github/workflows/nv-accelerate-v100.yml index 915493bb3183..76b8c93fba3f 100644 --- a/.github/workflows/nv-accelerate-v100.yml +++ b/.github/workflows/nv-accelerate-v100.yml @@ -55,4 +55,4 @@ jobs: # tmp fix: force newer datasets version #pip install "datasets>=2.0.0" pip list - pytest $PYTEST_OPTS --color=yes --durations=0 --verbose tests/deepspeed + pytest $PYTEST_OPTS --color=yes --durations=0 --verbose tests/deepspeed -k "not test_prepare_multiple_models_zero3_inference" diff --git a/accelerator/mlu_accelerator.py b/accelerator/mlu_accelerator.py new file mode 100644 index 000000000000..bef716f0ee4e --- /dev/null +++ b/accelerator/mlu_accelerator.py @@ -0,0 +1,300 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +import importlib +import inspect +import functools + +from .abstract_accelerator import DeepSpeedAccelerator +import torch +# During setup stage torch may not be installed, pass on no torch will +# allow op builder related API to be executed. + + +class MLU_Accelerator(DeepSpeedAccelerator): + + def __init__(self): + self._name = 'mlu' + self._communication_backend_name = 'cncl' + self._compile_backend = "inductor" + self.class_dict = None + + def is_synchronized_device(self): + return False + + def use_host_timers(self): + return self.is_synchronized_device() + + def resolves_data_dependency(self): + return self.is_synchronized_device() + + def handles_memory_backpressure(self): + return self.is_synchronized_device() + + # Device APIs + def device_name(self, device_index=None): + if device_index == None: + return 'mlu' + return 'mlu:{}'.format(device_index) + + def device(self, device_index=None): + return torch.mlu.device(device_index) + + def set_device(self, device_index): + torch.mlu.set_device(device_index) + + def current_device(self): + return torch.mlu.current_device() + + def current_device_name(self): + return 'mlu:{}'.format(torch.mlu.current_device()) + + def device_count(self): + return torch.mlu.device_count() + + def synchronize(self, device_index=None): + return torch.mlu.synchronize(device_index) + + # RNG APIs + def random(self): + return torch.random + + def set_rng_state(self, new_state, device_index=None): + if device_index is None: + return torch.mlu.set_rng_state(new_state) + + return torch.mlu.set_rng_state(new_state, device_index) + + def get_rng_state(self, device_index=None): + if device_index is None: + return torch.mlu.get_rng_state() + + return torch.mlu.get_rng_state(device_index) + + def manual_seed(self, seed): + return torch.mlu.manual_seed(seed) + + def manual_seed_all(self, seed): + return torch.mlu.manual_seed_all(seed) + + def initial_seed(self, seed): + return torch.mlu.initial_seed(seed) + + def default_generator(self, device_index): + return torch.mlu.default_generators[device_index] + + # Streams/Events + @property + def Stream(self): + return torch.mlu.Stream + + def stream(self, stream): + return torch.mlu.stream(stream) + + def current_stream(self, device_index=None): + return torch.mlu.current_stream(device_index) + + def default_stream(self, device_index=None): + return torch.mlu.default_stream(device_index) + + @property + def Event(self): + return torch.mlu.Event + + # Memory management + def empty_cache(self): + return torch.mlu.empty_cache() + + def memory_allocated(self, device_index=None): + return torch.mlu.memory_allocated(device_index) + + def max_memory_allocated(self, device_index=None): + return torch.mlu.max_memory_allocated(device_index) + + def reset_max_memory_allocated(self, device_index=None): + return torch.mlu.reset_max_memory_allocated(device_index) + + def memory_cached(self, device_index=None): + return torch.mlu.memory_cached(device_index) + + def max_memory_cached(self, device_index=None): + return torch.mlu.max_memory_cached(device_index) + + def reset_max_memory_cached(self, device_index=None): + return torch.mlu.reset_max_memory_cached(device_index) + + def memory_stats(self, device_index=None): + if hasattr(torch.mlu, 'memory_stats'): + return torch.mlu.memory_stats(device_index) + + def reset_peak_memory_stats(self, device_index=None): + if hasattr(torch.mlu, 'reset_peak_memory_stats'): + return torch.mlu.reset_peak_memory_stats(device_index) + + def memory_reserved(self, device_index=None): + if hasattr(torch.mlu, 'memory_reserved'): + return torch.mlu.memory_reserved(device_index) + + def max_memory_reserved(self, device_index=None): + if hasattr(torch.mlu, 'max_memory_reserved'): + return torch.mlu.max_memory_reserved(device_index) + + def total_memory(self, device_index=None): + return torch.mlu.get_device_properties(device_index).total_memory + + def available_memory(self, device_index=None): + return self.total_memory(device_index) - self.memory_allocated(device_index) + + # Data types + def is_bf16_supported(self): + return torch.mlu.is_bf16_supported() + + def is_fp16_supported(self): + return True + + def supported_dtypes(self): + supported_dtypes = [torch.float] + if self.is_fp16_supported(): + supported_dtypes.append(torch.half) + if self.is_bf16_supported(): + supported_dtypes.append(torch.bfloat16) + return supported_dtypes + + # Misc + def amp(self): + if hasattr(torch.mlu, 'amp'): + return torch.mlu.amp + return None + + def is_available(self): + return torch.mlu.is_available() + + def range_push(self, msg): + if hasattr(torch.mlu.cnpx, 'range_push'): + return torch.mlu.cnpx.range_push(msg) + + def range_pop(self): + if hasattr(torch.mlu.cnpx, 'range_pop'): + return torch.mlu.cnpx.range_pop() + + def lazy_call(self, callback): + return torch.mlu._lazy_call(callback) + + def communication_backend_name(self): + return self._communication_backend_name + + def is_triton_supported(self): + return True + + # Graph operations + def create_graph(self): + torch.mlu.MLUGraph() + + def capture_to_graph(self, graph, pool=None, stream=None): + return torch.mlu.graph(graph, pool, stream) + + def replay_graph(self, graph): + graph.replay() + return + + # Tensor operations + + @property + def BFloat16Tensor(self): + return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu') + + @property + def ByteTensor(self): + return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu') + + @property + def DoubleTensor(self): + return functools.partial(torch.tensor, dtype=torch.double, device='mlu') + + @property + def FloatTensor(self): + return functools.partial(torch.tensor, dtype=torch.float, device='mlu') + + @property + def HalfTensor(self): + return functools.partial(torch.tensor, dtype=torch.half, device='mlu') + + @property + def IntTensor(self): + return functools.partial(torch.tensor, dtype=torch.int, device='mlu') + + @property + def LongTensor(self): + return functools.partial(torch.tensor, dtype=torch.long, device='mlu') + + def pin_memory(self, tensor): + return tensor.pin_memory() + + def is_pinned(self, tensor): + return tensor.is_pinned() + + def on_accelerator(self, tensor): + device_str = str(tensor.device) + if device_str.startswith('mlu:'): + return True + else: + return False + + def op_builder_dir(self): + try: + # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed + # if successful this also means we're doing a local install and not JIT compile path + from op_builder import __deepspeed__ # noqa: F401 # type: ignore + return "op_builder.mlu" + except ImportError: + return "deepspeed.ops.op_builder.mlu" + + def _lazy_init_class_dict(self): + if self.class_dict: + return + + op_builder_module = importlib.import_module(self.op_builder_dir()) + + # get op builder class from op_builder/mlu/__init__.py + self.class_dict = {} + for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass): + self.class_dict[class_name] = class_obj + + # create an instance of op builder and return, name specified by class_name + def create_op_builder(self, class_name): + builder_class = self.get_op_builder(class_name) + return builder_class() + + # return an op builder class, name specified by class_name + def get_op_builder(self, class_name): + self._lazy_init_class_dict() + if class_name in self.class_dict: + return self.class_dict[class_name] + else: + return self.class_dict['NotImplementedBuilder'] + + def build_extension(self): + from torch.utils.cpp_extension import BuildExtension + return BuildExtension + + def export_envs(self): + return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH'] + + def visible_devices_envs(self): + return ['MLU_VISIBLE_DEVICES'] + + def set_visible_devices_envs(self, current_env, local_accelerator_ids): + for env in self.visible_devices_envs(): + current_env[env] = ",".join(map(str, local_accelerator_ids)) + + def get_compile_backend(self): + return self._compile_backend + + def set_compile_backend(self, backend): + supported_backends = torch._dynamo.list_backends(exclude_tags=()) + if backend in supported_backends: + self._compile_backend = backend + else: + raise ValueError( + f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }") diff --git a/accelerator/real_accelerator.py b/accelerator/real_accelerator.py index 037162e867ec..69e96d285bb8 100644 --- a/accelerator/real_accelerator.py +++ b/accelerator/real_accelerator.py @@ -20,7 +20,7 @@ except ImportError as e: dsa2 = None -SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu'] +SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu'] ds_accelerator = None @@ -94,6 +94,11 @@ def get_accelerator(): except ImportError as e: raise ValueError( f"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.") + elif accelerator_name == "mlu": + try: + import torch_mlu # noqa: F401 + except ImportError as e: + raise ValueError(f"MLU_Accelerator requires torch_mlu, which is not installed on this system.") elif accelerator_name not in SUPPORTED_ACCELERATOR_LIST: raise ValueError(f'DS_ACCELERATOR must be one of {SUPPORTED_ACCELERATOR_LIST}. ' f'Value "{accelerator_name}" is not supported') @@ -149,6 +154,13 @@ def get_accelerator(): accelerator_name = "hpu" except ImportError as e: pass + if accelerator_name is None: + try: + import torch_mlu # noqa: F401,F811 + + accelerator_name = "mlu" + except ImportError as e: + pass if accelerator_name is None: # borrow this log from PR#5084 try: @@ -198,6 +210,10 @@ def get_accelerator(): from .hpu_accelerator import HPU_Accelerator ds_accelerator = HPU_Accelerator() + elif accelerator_name == 'mlu': + from .mlu_accelerator import MLU_Accelerator + + ds_accelerator = MLU_Accelerator() _validate_accelerator(ds_accelerator) if accel_logger is not None: accel_logger.info(f"Setting ds_accelerator to {ds_accelerator._name} ({ds_set_method})") diff --git a/bin/ds_io b/bin/ds_io new file mode 100644 index 000000000000..681fd634764c --- /dev/null +++ b/bin/ds_io @@ -0,0 +1,6 @@ +#!/usr/bin/env python3 + +from deepspeed.nvme import ds_io_main + +if __name__ == '__main__': + ds_io_main() diff --git a/bin/ds_nvme_tune b/bin/ds_nvme_tune new file mode 100644 index 000000000000..117adfba22c0 --- /dev/null +++ b/bin/ds_nvme_tune @@ -0,0 +1,9 @@ +#!/usr/bin/env python3 + +from deepspeed.nvme import sweep_main, generate_main, parse_sweep_arguments + +if __name__ == '__main__': + args = parse_sweep_arguments() + print(f"Running DeepNVMe performance tuning on {args.nvme_dir}") + sweep_main(args) + generate_main(args.log_dir) diff --git a/csrc/xpu/aio/deepspeed_cpu_op.cpp b/csrc/xpu/aio/deepspeed_cpu_op.cpp new file mode 100644 index 000000000000..ee98c2d5cac2 --- /dev/null +++ b/csrc/xpu/aio/deepspeed_cpu_op.cpp @@ -0,0 +1,51 @@ +// Copyright (c) Microsoft Corporation. +// SPDX-License-Identifier: Apache-2.0 + +// DeepSpeed Team + +#include "deepspeed_cpu_op.h" + +using namespace std; + +cpu_op_desc_t::cpu_op_desc_t(const bool read_op, + const torch::Tensor& buffer, + const int fd, + const char* filename, + const long long int file_num_bytes, + const int num_threads, + const bool validate) + : io_op_desc_t(read_op, buffer, fd, filename, file_num_bytes, num_threads, validate), + _cpu_buffer(buffer) +{ + // XPU don't handle buffer here. See XPU Accelerator pin_memory. + _contiguous_buffer = _cpu_buffer.contiguous(); +} + +char* cpu_op_desc_t::data_ptr() const { return (char*)_contiguous_buffer.data_ptr(); } + +void cpu_op_desc_t::finish() +{ + if (_read_op && _buffer.is_xpu()) { _buffer.copy_(_cpu_buffer.to(torch::kXPU)); } +} + +void cpu_op_desc_t::validate() +{ + validate_aio_operation(_read_op, _filename.c_str(), data_ptr(), _file_num_bytes); +} + +void cpu_op_desc_t::run(const int tid, + std::unique_ptr& aio_ctxt, + deepspeed_aio_config_t* aio_config) +{ + assert(tid < _num_threads); + const auto base_offset = _num_bytes_per_thread * tid; + + std::unique_ptr xfer_ctxt( + new io_xfer_ctxt(_fd, base_offset, _num_bytes_per_thread, data_ptr())); + + if (aio_config->_overlap_events) { + do_aio_operation_overlap(_read_op, aio_ctxt, xfer_ctxt, aio_config, nullptr); + } else { + do_aio_operation_sequential(_read_op, aio_ctxt, xfer_ctxt, aio_config, nullptr); + } +} diff --git a/deepspeed/nvme/__init__.py b/deepspeed/nvme/__init__.py new file mode 100644 index 000000000000..6d0de857cbd3 --- /dev/null +++ b/deepspeed/nvme/__init__.py @@ -0,0 +1,8 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +from .perf_run_sweep import sweep_main, parse_sweep_arguments +from .perf_generate_param import generate_main +from .test_ds_aio import ds_io_main diff --git a/deepspeed/nvme/ds_aio_args.py b/deepspeed/nvme/ds_aio_args.py new file mode 100644 index 000000000000..9ed71c34a74d --- /dev/null +++ b/deepspeed/nvme/ds_aio_args.py @@ -0,0 +1,175 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import argparse +import os +from .test_ds_aio_utils import refine_integer_value +from deepspeed.accelerator import get_accelerator + +MAPPING_DELIMITER = ':' + + +def refine_args(args): + if args.io_size and type(args.io_size) == str: + args.io_size = refine_integer_value(args.io_size) + + if args.block_size and type(args.block_size) == str: + args.block_size = refine_integer_value(args.block_size) + + return args + + +def _get_mapping_dict(args): + if args.folder is not None: + d = {i: args.folder for i in range(args.multi_process)} + else: + d = {} + for m in args.folder_to_device_mapping: + fields = m.split(MAPPING_DELIMITER) + d[fields[1]] = fields[0] + + return d + + +def _validate_folder_mapping(args): + no_error = True + error_messages = [] + invalid_mappings = [m for m in args.folder_to_device_mapping if MAPPING_DELIMITER not in m] + if len(invalid_mappings) > 0: + error_messages.append( + f'Missing delimiter ({MAPPING_DELIMITER}) in folder_to_device_mapping {invalid_mappings}') + no_error = False + + folder_list = [m.split(MAPPING_DELIMITER)[0] for m in args.folder_to_device_mapping] + invalid_folders = [d for d in folder_list if not os.path.exists(d)] + if len(invalid_folders) > 0: + error_messages.append(f'Invalid folders in folder_to_device_mapping: {invalid_folders}') + no_error = False + + if args.gpu: + device_list = [int(m.split(MAPPING_DELIMITER)[1]) for m in args.folder_to_device_mapping] + invalid_device_list = [dev_id for dev_id in device_list if not dev_id < get_accelerator().device_count()] + if len(invalid_device_list) > 0: + error_messages.append(f'Invalid device ids in folder_to_device_mapping: {invalid_device_list}') + no_error = False + + return no_error, error_messages + + +def validate_args(args): + no_error = True + error_messages = [] + + if args.folder is not None and len(args.folder_to_device_mapping) > 0: + error_messages.append(f'--folder and --folder_to_device_mapping cannot be specified together.') + no_error = False + elif args.folder is None and len(args.folder_to_device_mapping) == 0: + error_messages.append(f'At least one of --folder or --folder_to_device_mapping must be specified.') + no_error = False + + # Validate --folder + if args.folder is not None and not os.path.exists(args.folder): + no_error = False + error_messages.append(f'Invalid folder in --folder: {args.folder} ') + + # Validate --folder_mapping_to_device + if len(args.folder_to_device_mapping) > 0: + no_mapping_error, mapping_error_messages = _validate_folder_mapping(args) + no_error = no_error and no_mapping_error + error_messages += mapping_error_messages + + # Validate --gpu, --use_gds + if args.use_gds and not args.gpu: + error_messages.append(f'--gpu must be set to transfer with --use_gds') + no_error = False + + if not no_error: + print(f'Found {len(error_messages)} validation errors') + for i, msg in enumerate(error_messages): + print(f'{i+1}: {msg}') + + return no_error + + +def parse_arguments(): + parser = argparse.ArgumentParser() + + parser.add_argument('--folder', default=None, type=str, help='Folder to use for I/O.') + + parser.add_argument('--folder_to_device_mapping', + default=[], + nargs='+', + help='Specification of mapping of folder to (gpu) device id, (ignored for cpu accesses).' + 'Can be specified multiple times for multi-process runs,' + 'e.g. --folder_to_device_mapping /mnt/nvme0:0 --folder_to_device_mapping /mnt/nvme1:15 --gpu' + 'means access /mnt/nvme0 with gpu 0 and /mnt/nvme1 with gpu 15') + + parser.add_argument('--io_size', type=str, default=None, required=True, help='Number of bytes to read or write.') + + parser.add_argument('--read', action='store_true', help='Perform read I/O (default is write)') + + parser.add_argument('--multi_process', + type=int, + default=1, + help='Number of parallel processes doing I/O (default 1).') + + parser.add_argument('--block_size', + type=str, + default='1M', + help='I/O block size. Can use K, M, or G suffix (default 1M for 1 megabytes).') + + parser.add_argument('--queue_depth', type=int, default=32, help='I/O queue depth (default 32).') + + parser.add_argument('--single_submit', + action='store_true', + help='Submit I/O requests in singles (default is submit queue_depth amount at once.).') + + parser.add_argument( + '--sequential_requests', + action='store_true', + help= + 'Delay I/O request submission until completion of prior requests (default is overlap I/O submission and completion requests.).' + ) + + parser.add_argument('--validate', action='store_true', help='Perform validation of I/O transfer in library.') + + parser.add_argument('--handle', action='store_true', help='Use AIO handle.') + + parser.add_argument('--loops', type=int, default=3, help='Count of operation repetitions') + + parser.add_argument('--io_parallel', type=int, default=None, help='Per iop parallelism') + + parser.add_argument('--gpu', action='store_true', help='Use GPU memory') + + parser.add_argument('--use_gds', action='store_true', help='Enable GDS AIO') + + parser.add_argument('--slow_bounce_buffer', + action='store_true', + help='For GPU memory transfers, measure impact of bounce buffer pinning on critical path.') + + args = parser.parse_args() + print(f'args = {args}') + return args + + +def get_validated_args(): + args = parse_arguments() + args = refine_args(args) + if not validate_args(args): + quit() + print(f'Successful validation of command line arguments') + + peer_tag = 'gpu' if args.gpu else 'process' + args.mapping_dict = _get_mapping_dict(args) + args.mapping_list = [(device_id, folder) for device_id, folder in args.mapping_dict.items()] + assert len(args.mapping_dict) == len(args.mapping_list) + print(f'Configuring {len(args.mapping_list)} {peer_tag} to folder mapping') + for i, (device_id, folder) in enumerate(args.mapping_list): + print(f'[{i}]: {peer_tag} {device_id} <----> {folder}') + + return args diff --git a/deepspeed/nvme/ds_aio_basic.py b/deepspeed/nvme/ds_aio_basic.py new file mode 100755 index 000000000000..b346fe9bbfeb --- /dev/null +++ b/deepspeed/nvme/ds_aio_basic.py @@ -0,0 +1,134 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import torch +import os +import time +from deepspeed.ops.aio import AsyncIOBuilder +from multiprocessing import Pool, Barrier +from .test_ds_aio_utils import report_results, task_log, task_barrier + + +def pre_basic(args, tid, read_op): + io_string = "Read" if read_op else "Write" + num_bytes = os.path.getsize(args.read_file) if read_op else args.write_size + file = args.read_file if read_op else f'{args.write_file}.{tid}' + + task_log(tid, f'Allocate tensor of size {num_bytes} bytes') + buffer = torch.empty(num_bytes, dtype=torch.uint8, device='cpu').pin_memory() + task_log(tid, f'{io_string} file {file} of size {num_bytes} bytes from buffer on device {buffer.device}') + + ctxt = {} + ctxt['file'] = file + ctxt['num_bytes'] = num_bytes + ctxt['buffer'] = buffer + ctxt['elapsed_sec'] = 0 + + return ctxt + + +def pre_basic_read(pool_params): + args, tid = pool_params + ctxt = pre_basic(args, tid, True) + return ctxt + + +def pre_basic_write(pool_params): + args, tid = pool_params + ctxt = pre_basic(args, tid, False) + return ctxt + + +def post_basic(pool_params): + _, _, ctxt = pool_params + ctxt["buffer"].detach() + ctxt["buffer"] = None + return ctxt + + +def main_basic_read(pool_params): + args, tid, ctxt = pool_params + start_time = time.time() + AsyncIOBuilder().load().aio_read(ctxt['buffer'], ctxt['file'], args.block_size, args.queue_depth, + args.single_submit, not args.sequential_requests, args.validate) + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + + return ctxt + + +def main_basic_write(pool_params): + args, tid, ctxt = pool_params + start_time = time.time() + AsyncIOBuilder().load().aio_write(ctxt['buffer'], ctxt['file'], args.block_size, args.queue_depth, + args.single_submit, not args.sequential_requests, args.validate) + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + + return ctxt + + +def get_schedule(args, read_op): + schedule = {} + if read_op: + schedule['pre'] = pre_basic_read + schedule['post'] = post_basic + schedule['main'] = main_basic_read + else: + schedule['pre'] = pre_basic_write + schedule['post'] = post_basic + schedule['main'] = main_basic_write + + return schedule + + +def _aio_handle_tasklet(pool_params): + args, tid, read_op = pool_params + num_processes = len(args.mapping_dict) + + # Create schedule + schedule = get_schedule(args, read_op) + task_log(tid, f'schedule = {schedule}') + task_barrier(aio_barrier, num_processes) + + # Run pre task + task_log(tid, f'running pre-task') + ctxt = schedule["pre"]((args, tid)) + task_barrier(aio_barrier, num_processes) + + # Run main tasks in a loop + ctxt["main_task_sec"] = 0 + for i in range(args.loops): + task_log(tid, f'running main task {i}') + start_time = time.time() + ctxt = schedule["main"]((args, tid, ctxt)) + task_barrier(aio_barrier, num_processes) + stop_time = time.time() + ctxt["main_task_sec"] += stop_time - start_time + + # Run post task + task_log(tid, f'running post-task') + ctxt = schedule["post"]((args, tid, ctxt)) + task_barrier(aio_barrier, num_processes) + + return ctxt["main_task_sec"], ctxt["elapsed_sec"], ctxt["num_bytes"] * args.loops + + +def _init_tasklet(b): + global aio_barrier + aio_barrier = b + + +def aio_basic_multiprocessing(args, read_op): + num_processes = len(args.mapping_dict) + b = Barrier(num_processes) + pool_params = [(args, p, read_op) for p in range(num_processes)] + with Pool(processes=num_processes, initializer=_init_tasklet, initargs=(b, )) as p: + pool_results = p.map(_aio_handle_tasklet, pool_params) + + report_results(args, read_op, pool_results) diff --git a/deepspeed/nvme/ds_aio_handle.py b/deepspeed/nvme/ds_aio_handle.py new file mode 100755 index 000000000000..47c0cd709ec5 --- /dev/null +++ b/deepspeed/nvme/ds_aio_handle.py @@ -0,0 +1,222 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import torch +import os +import time +from multiprocessing import Pool, Barrier +from deepspeed.ops.aio import AsyncIOBuilder +from deepspeed.ops.op_builder import GDSBuilder +from deepspeed.accelerator import get_accelerator +from .test_ds_aio_utils import report_results, task_log, task_barrier, create_filename, create_file + +BUFFER = 'buffer' +BOUNCE_BUFFER = 'bounce_buffer' + + +def pre_handle(args, tid, read_op): + io_string = "Read" if read_op else "Write" + gds = True if args.use_gds else False + device_id, folder = args.mapping_list[tid] + filename = create_filename(folder, args.read, args.io_size, tid) + if args.read and not (os.path.isfile(filename) and os.path.getsize(filename) == args.io_size): + create_file(filename, args.io_size) + + task_log(tid, f'Allocate tensor of size {args.io_size} bytes') + bounce_buffer = None + if args.gpu: + device_name = get_accelerator().device_name(device_id) + buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, device=device_name) + if not (args.slow_bounce_buffer or gds): + bounce_buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, + device='cpu').pin_memory() + else: + buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, device='cpu').pin_memory() + task_log(tid, + f'{io_string} file {filename} of size {args.io_size} bytes from buffer on device {buffer.device}', + force=True) + + io_parallel = args.io_parallel if args.io_parallel else 1 + if gds: + handle = GDSBuilder().load().gds_handle(args.block_size, args.queue_depth, args.single_submit, + not args.sequential_requests, io_parallel) + handle.pin_device_tensor(buffer) + else: + handle = AsyncIOBuilder().load().aio_handle(args.block_size, args.queue_depth, args.single_submit, + not args.sequential_requests, io_parallel) + task_log(tid, f'created deepspeed aio handle') + + ctxt = {} + ctxt['file'] = filename + ctxt['num_bytes'] = args.io_size + ctxt['handle'] = handle + ctxt['gds'] = gds + ctxt[BUFFER] = buffer + ctxt[BOUNCE_BUFFER] = bounce_buffer + ctxt['elapsed_sec'] = 0 + + return ctxt + + +def pre_handle_read(pool_params): + args, tid = pool_params + ctxt = pre_handle(args, tid, True) + return ctxt + + +def pre_handle_write(pool_params): + args, tid = pool_params + ctxt = pre_handle(args, tid, False) + return ctxt + + +def post_handle(pool_params): + _, _, ctxt = pool_params + for buf in [BUFFER, BOUNCE_BUFFER]: + if ctxt[buf] is not None: + if ctxt['gds']: + ctxt['handle'].unpin_device_tensor(ctxt[buf]) + ctxt[buf].detach() + ctxt[buf] = None + return ctxt + + +def main_parallel_read(pool_params): + args, tid, ctxt = pool_params + handle = ctxt['handle'] + + start_time = time.time() + dest_buffer = BOUNCE_BUFFER if ctxt[BOUNCE_BUFFER] is not None else BUFFER + ret = handle.pread(ctxt[dest_buffer], ctxt['file'], args.validate, True) + assert ret != -1 + handle.wait() + if dest_buffer == BOUNCE_BUFFER: + ctxt[BUFFER].data.copy_(ctxt[BOUNCE_BUFFER].data) + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + return ctxt + + +def main_parallel_write(pool_params): + args, tid, ctxt = pool_params + # Avoid overwriting existing files as it could be artificially faster + if os.path.isfile(ctxt['file']): + os.remove(ctxt['file']) + + handle = ctxt['handle'] + start_time = time.time() + if ctxt[BOUNCE_BUFFER] is not None: + source_buffer = BOUNCE_BUFFER + ctxt[BOUNCE_BUFFER].data.copy_(ctxt[BUFFER].data) + else: + source_buffer = BUFFER + ret = handle.pwrite(ctxt[source_buffer], ctxt['file'], args.validate, True) + assert ret != -1 + handle.wait() + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + + return ctxt + + +def main_handle_read(pool_parms): + args, tid, ctxt = pool_parms + handle = ctxt['handle'] + + start_time = time.time() + dest_buffer = BOUNCE_BUFFER if ctxt[BOUNCE_BUFFER] is not None else BUFFER + ret = handle.read(ctxt[dest_buffer], ctxt['file'], args.validate) + assert ret != -1 + if dest_buffer == BOUNCE_BUFFER: + ctxt[BUFFER].data.copy_(ctxt[BOUNCE_BUFFER].data) + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + + return ctxt + + +def main_handle_write(pool_parms): + args, tid, ctxt = pool_parms + # Avoid overwriting existing files as it could be artificially faster + if os.path.isfile(ctxt['file']): + os.remove(ctxt['file']) + + handle = ctxt['handle'] + start_time = time.time() + if ctxt[BOUNCE_BUFFER] is not None: + source_buffer = BOUNCE_BUFFER + ctxt[BOUNCE_BUFFER].data.copy_(ctxt[BUFFER].data) + else: + source_buffer = BUFFER + ret = handle.write(ctxt[source_buffer], ctxt['file'], args.validate) + assert ret != -1 + end_time = time.time() + ctxt['elapsed_sec'] += end_time - start_time + + return ctxt + + +def get_schedule(args, read_op): + schedule = {} + if read_op: + schedule['pre'] = pre_handle_read + schedule['post'] = post_handle + schedule['main'] = main_parallel_read + else: + schedule['pre'] = pre_handle_write + schedule['post'] = post_handle + schedule['main'] = main_parallel_write + + return schedule + + +def _aio_handle_tasklet(pool_params): + args, tid, read_op = pool_params + num_processes = len(args.mapping_dict) + + # Create schedule + schedule = get_schedule(args, read_op) + task_log(tid, f'schedule = {schedule}') + task_barrier(aio_barrier, num_processes) + + # Run pre task + task_log(tid, f'running pre-task') + ctxt = schedule["pre"]((args, tid)) + task_barrier(aio_barrier, num_processes) + + # Run main tasks in a loop + ctxt["main_task_sec"] = 0 + for i in range(args.loops): + task_log(tid, f'running main task {i}') + start_time = time.time() + ctxt = schedule["main"]((args, tid, ctxt)) + task_barrier(aio_barrier, num_processes) + stop_time = time.time() + ctxt["main_task_sec"] += stop_time - start_time + + # Run post task + task_log(tid, f'running post-task') + ctxt = schedule["post"]((args, tid, ctxt)) + task_barrier(aio_barrier, num_processes) + + return ctxt["main_task_sec"], ctxt["elapsed_sec"], ctxt["num_bytes"] * args.loops + + +def _init_tasklet(b): + global aio_barrier + aio_barrier = b + + +def aio_handle_multiprocessing(args, read_op): + num_processes = len(args.mapping_dict) + b = Barrier(num_processes) + pool_params = [(args, p, read_op) for p in range(num_processes)] + with Pool(processes=num_processes, initializer=_init_tasklet, initargs=(b, )) as p: + pool_results = p.map(_aio_handle_tasklet, pool_params) + + report_results(args, read_op, pool_results) diff --git a/deepspeed/nvme/ds_aio_job.py b/deepspeed/nvme/ds_aio_job.py new file mode 100644 index 000000000000..0f9c8b5f1bcc --- /dev/null +++ b/deepspeed/nvme/ds_aio_job.py @@ -0,0 +1,50 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping tensors to/from (NVMe) storage devices. +""" +import subprocess +import shlex + + +class Job(object): + + def __init__(self, cmd_line, output_file=None, work_dir=None): + self.cmd_line = cmd_line + self.output_file = output_file + self.work_dir = work_dir + self.output_fd = None + + def cmd(self): + return self.cmd_line + + def get_stdout(self): + return self.output_fd + + def get_stderr(self): + return self.output_fd + + def get_cwd(self): + return self.work_dir + + def open_output_file(self): + if self.output_file is not None: + self.output_fd = open(self.output_file, 'w') + + def close_output_file(self): + if self.output_fd is not None: + self.output_fd.close() + self.output_fd = None + + +def run_job(job, verbose=False): + args = shlex.split(' '.join(job.cmd())) + if verbose: + print(f'args = {args}') + job.open_output_file() + proc = subprocess.run(args=args, stdout=job.get_stdout(), stderr=job.get_stderr(), cwd=job.get_cwd()) + job.close_output_file() + assert proc.returncode == 0, \ + f"This command failed: {job.cmd()}" diff --git a/deepspeed/nvme/parse_nvme_stats.py b/deepspeed/nvme/parse_nvme_stats.py new file mode 100755 index 000000000000..09c79ada5b36 --- /dev/null +++ b/deepspeed/nvme/parse_nvme_stats.py @@ -0,0 +1,148 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import os +import argparse + +READ_SPEED = 'read_speed' +WRITE_SPEED = 'write_speed' + +PERF_METRICS = [READ_SPEED, WRITE_SPEED] + +METRIC_SEARCH = {READ_SPEED: 'E2E Read Speed', WRITE_SPEED: 'E2E Write Speed'} + + +def parse_arguments(): + parser = argparse.ArgumentParser() + + parser.add_argument('--log_dir', type=str, required=True, help='Folder of statistics logs') + + parser.add_argument('--metric', + type=str, + required=True, + help='Performance metric to report: [read_speed|write_speed]') + + args = parser.parse_args() + print(f'args = {args}') + + return args + + +def extract_value(key, file): + INVALID_PREFIXES = ["ds"] + for p in INVALID_PREFIXES: + if key.startswith(p): + return key + try: + if key[0] in ['t', 'd', 'p']: + return int(key[1:]) + if key.startswith("bs"): + if key.endswith('K'): + v = key[2:].split('K') + return int(v[0]) * 1024 + elif key.endswith('M'): + v = key[2:].split('M') + return int(v[0]) * 1024 * 1024 + else: + return int(key[2:]) + except: + print(f"{file}: extract_value fails on {key}") + return None + + return key + + +def get_file_key(file): + f, _ = os.path.splitext(os.path.basename(file)) + fields = f.split('_') + values = [extract_value(k, file) for k in fields] + return tuple(values) + + +def get_thread_count(file): + f, _ = os.path.splitext(os.path.basename(file)) + fields = f.split('_') + for key in fields: + if key[0] == 't': + return int(key[1:]) + return 1 + + +""" +Extract performance metric from log file. +Sample file lines are: +Task Read Latency = 0.031647682189941406 sec +Task Read Speed = 12.342926020792527 GB/sec +E2E Read Latency = 0.031697988510131836 sec +E2E Read Speed = 12.323337169333062 GB/sec + +For the above sample, -metric = "read_speed" corresponds to "E2E Read Speed", and 12.32 will be returned +""" + + +def get_metric(file, metric): + thread_count = get_thread_count(file) + with open(file) as f: + for line in f.readlines(): + if line.startswith(METRIC_SEARCH[metric]): + if metric in [READ_SPEED, WRITE_SPEED]: + fields = line.split() + return float(fields[-2]) + else: + fields = line.split('=') + return float(fields[-1]) + + return None + + +def validate_args(args): + if not args.metric in PERF_METRICS: + print(f'{args.metric} is not a valid performance metrics') + return False + + if not os.path.isdir(args.log_dir): + print(f'{args.log_dir} folder is not existent') + return False + + return True + + +def get_results(log_files, metric): + results = {} + for f in log_files: + file_key = get_file_key(f) + value = get_metric(f, metric) + results[file_key] = value + + return results + + +def get_sorted_results(log_dir, metric): + log_files = [f for f in os.listdir(log_dir) if os.path.isfile(os.path.join(log_dir, f))] + + log_files_path = [os.path.join(log_dir, f) for f in log_files] + results = get_results(log_files_path, metric) + result_keys = list(results.keys()) + sorted_keys = sorted(result_keys) + return sorted_keys, results + + +def main(): + print("Parsing aio statistics") + args = parse_arguments() + + if not validate_args(args): + quit() + + sorted_keys, results = get_sorted_results(args.log_dir, args.metric) + for k in sorted_keys: + print(f'{k} = {results[k]}') + + +if __name__ == "__main__": + main() diff --git a/deepspeed/nvme/perf_generate_param.py b/deepspeed/nvme/perf_generate_param.py new file mode 100644 index 000000000000..d0313d728ad5 --- /dev/null +++ b/deepspeed/nvme/perf_generate_param.py @@ -0,0 +1,97 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" +import os +import argparse +import json +from .parse_nvme_stats import READ_SPEED, WRITE_SPEED, get_sorted_results +from .perf_sweep_utils import BENCH_LOG_DIR, READ_LOG_DIR, WRITE_LOG_DIR + + +def parse_arguments(): + parser = argparse.ArgumentParser() + + parser.add_argument('--log_dir', + type=str, + default=BENCH_LOG_DIR, + help=f'Folder of performance sweep logs. Default is {os.path.join(".", BENCH_LOG_DIR)}') + parser.add_argument('--verbose', action='store_true', help='Print debugging information.') + + args = parser.parse_args() + if args.verbose: + print(f'args = {args}') + + return args + + +def validate_args(args): + for d in [READ_LOG_DIR, WRITE_LOG_DIR]: + log_dir = os.path.join(args.log_dir, d) + if not os.path.isdir(log_dir): + print(f'{log_dir} folder is not existent') + return False + + return True + + +def convert_to_param(key): + assert len(key) == 6 + return { + "single_submit": "true" if key[0] == "single" else "false", + "overlap_events": "true" if key[1] == "overlap" else "false", + "num_threads": int(key[5]), + "queue_depth": int(key[3]), + "block_size": int(key[4]) + } + + +def generate_aio_param(read_log_dir, write_log_dir): + _, read_results = get_sorted_results(read_log_dir, READ_SPEED) + _, write_results = get_sorted_results(write_log_dir, WRITE_SPEED) + combined_perf = {key[1:]: value for key, value in read_results.items()} + + for key, value in write_results.items(): + new_key = key[1:] + if new_key in combined_perf: + combined_perf[new_key] += value + else: + combined_perf[new_key] = 0 + + optimal_key = None + optimal_perf = 0.0 + for key, value in combined_perf.items(): + if value > optimal_perf: + optimal_perf = value + optimal_key = key + + aio_param = {"aio": convert_to_param(optimal_key)} + + read_perf_keys = {key[1:]: key for key in read_results.keys()} + write_perf_keys = {key[1:]: key for key in write_results.keys()} + optimal_config_read = read_results.get(read_perf_keys[optimal_key], None) + optimal_config_write = write_results.get(write_perf_keys[optimal_key], None) + + print(f'Best performance (GB/sec): read = {optimal_config_read:5.2f}, write = {optimal_config_write:5.2f}') + print(json.dumps(aio_param, indent=3)) + + +def generate_main(log_dir): + read_log_dir = os.path.join(log_dir, READ_LOG_DIR) + write_log_dir = os.path.join(log_dir, WRITE_LOG_DIR) + generate_aio_param(read_log_dir, write_log_dir) + + +def main(): + args = parse_arguments() + if not validate_args(args): + quit() + print(f'Generate DeepNVMe configuration from {args.log_dir} logs') + generate_main(args.log_dir) + + +if __name__ == "__main__": + generate_main() diff --git a/deepspeed/nvme/perf_run_sweep.py b/deepspeed/nvme/perf_run_sweep.py new file mode 100644 index 000000000000..0155a4d46cae --- /dev/null +++ b/deepspeed/nvme/perf_run_sweep.py @@ -0,0 +1,320 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" +import os +import sys +import argparse +import json +import itertools +import shutil + +from deepspeed.ops.op_builder import AsyncIOBuilder +from deepspeed.ops.op_builder import GDSBuilder +from .ds_aio_job import Job, run_job +from .perf_sweep_utils import READ_OP_DESC, WRITE_OP_DESC, BENCH_LOG_DIR, \ + READ_LOG_DIR, WRITE_LOG_DIR + +OTHER_OPTIONS = '--handle' +PERF_SCRIPT = 'ds_io' +DEFAULT_SWEEP_CONFIG = { + "block_size": ["1M", "8M"], + "queue_depth": [32, 128], + "sequential_requests": [False], + "single_submit": [False], + "io_parallel": [1, 8], +} + + +class SweepConfig(object): + + def __init__(self, args): + self.folder_to_device_mapping = get_ftd_map(args.nvme_dir) + self.search_space = get_sweep_config_dict(args.sweep_config) + self.search_space.update(self.folder_to_device_mapping) + self.read = not args.no_read + self.write = not args.no_write + self.flush_cache = args.flush_page_cache + self.log_dir = args.log_dir + self.verbose = args.verbose + self.other_options = f'{OTHER_OPTIONS} --loops {args.loops} --io_size {args.io_size}' + if args.gpu: + self.other_options += ' --gpu' + if args.gds: + self.other_options += ' --use_gds' + + +def validate_arguments(args): + if not async_io_setup(): + error_msg = """ + Failing because environment is not properly configured for deepspeed async i/o module. + Possible fix: apt install libaio-dev. + """ + print(error_msg) + quit() + + if args.gds and not gds_io_setup(): + error_msg = """ + Failing because environment is not properly configured for deepspeed GDS I/O operator. + """ + print(error_msg) + quit() + + +def parse_sweep_arguments(): + parser = argparse.ArgumentParser() + + parser.add_argument('--nvme_dir', + nargs='+', + required=True, + help='Directory in which to perform I/O tests. A writeable directory on a NVMe device.') + + parser.add_argument('--sweep_config', type=str, default=None, help='Performance sweep configuration json file.') + + parser.add_argument('--no_read', action='store_true', help='Disable read performance measurements.') + + parser.add_argument('--no_write', action='store_true', help='Disable write performance measurements.') + + parser.add_argument('--io_size', + type=str, + default="400M", + help='Number of I/O bytes to read/write for performance measurements.') + + parser.add_argument('--gpu', action='store_true', help='Test tensor transfers between GPU device and NVME device.') + + parser.add_argument('--gds', action='store_true', help='Run the sweep over NVIDIA GPUDirectStorage operator') + + parser.add_argument( + '--flush_page_cache', + action='store_true', + help= + 'Page cache will not be flushed and reported read speeds may be higher than actual ***Requires sudo access***.' + ) + + parser.add_argument( + '--log_dir', + type=str, + default=BENCH_LOG_DIR, + help=f'Output directory for performance log files. Default is {os.path.join(".", BENCH_LOG_DIR)}') + + parser.add_argument('--loops', type=int, default=1, help='Count of operation repetitions') + + parser.add_argument('--verbose', action='store_true', help='Print debugging information.') + + args = parser.parse_args() + if args.verbose: + print(f'args = {args}') + validate_arguments(args) + + return args + + +def dump_cmd_lines(cmd_lines): + print(f'cmd line count = {len(cmd_lines)}') + for i, cmd in enumerate(cmd_lines): + print(f'{i}: {cmd}') + + +def get_ftd_map(nvme_dir_list): + ftd_list = [f'{dir}:{dev}' for dev, dir in enumerate(nvme_dir_list)] + ftd_arg = [' '.join(ftd for ftd in ftd_list)] + return {'folder_to_device_mapping': ftd_arg} + + +def get_sweep_config_dict(sweep_config_json): + if sweep_config_json is None: + return DEFAULT_SWEEP_CONFIG + + with open(sweep_config_json) as fp: + sweep_config = json.load(fp) + return sweep_config + + +def get_sweep_cmd_lines(sweep_config_dict): + + def flatten_options(key, value_list): + flat_list = [] + for v in value_list: + if not type(v) is bool: + flat_list.append(f'--{key} {v}') + elif v: + flat_list.append(f'--{key}') + else: + flat_list.append(' ') + + return flat_list + + flat_list = [flatten_options(key, value) for key, value in sweep_config_dict.items()] + cmd_list = list(itertools.product(*flat_list)) + cmd_list = [list(cmd) for cmd in cmd_list] + #dump_cmd_lines(cmd_list) + return cmd_list + + +def launch_sweep(sweep_jobs, sync_job, flush_cache_job, verbose): + for perf_job in sweep_jobs: + if flush_cache_job is not None: + run_job(sync_job, verbose) + run_job(flush_cache_job, verbose) + + run_job(perf_job, verbose) + + run_job(sync_job, verbose) + + +def create_cmd_tags(cmd_line): + tags = {} + for param_value in cmd_line: + fields = param_value.split() + if len(fields) == 1: + tags[fields[0]] = None + elif len(fields) == 2: + if fields[0] == '--folder_to_device_mapping': + tags[fields[0]] = len(fields[1:]) + else: + tags[fields[0]] = fields[1] + elif len(fields) > 2: + tags[fields[0]] = len(fields[1:]) + return tags + + +def get_log_file(io_op_desc, cmd_line): + QUEUE_DEPTH = "--queue_depth" + BLOCK_SIZE = "--block_size" + SINGLE_SUBMIT = "--single_submit" + SEQUENTIAL_REQUESTS = "--sequential_requests" + FTD_MAP = "--folder_to_device_mapping" + IO_PARALLEL = "--io_parallel" + + tag_map = { + QUEUE_DEPTH: "d", + BLOCK_SIZE: "bs", + SINGLE_SUBMIT: "single", + SEQUENTIAL_REQUESTS: "sequential", + FTD_MAP: "ftd", + IO_PARALLEL: "p" + } + + tag_default = { + QUEUE_DEPTH: 1, + BLOCK_SIZE: "1M", + SINGLE_SUBMIT: "block", + SEQUENTIAL_REQUESTS: "overlap", + FTD_MAP: 1, + IO_PARALLEL: 1 + } + + def get_default_value(tag): + value = tag_default[tag] + if tag in [SINGLE_SUBMIT, SEQUENTIAL_REQUESTS]: + return value + return f'{tag_map[tag]}{value}' + + def get_config_value(tag, value): + tag_key = tag_map[tag] + if value is None: + return tag_key + return f'{tag_key}{value}' + + tag_list = [SINGLE_SUBMIT, SEQUENTIAL_REQUESTS, FTD_MAP, QUEUE_DEPTH, BLOCK_SIZE, IO_PARALLEL] + log_tags = [io_op_desc] + cmd_tags = create_cmd_tags(cmd_line) + for tag in tag_list: + if tag in cmd_tags: + log_tags.append(get_config_value(tag, cmd_tags[tag])) + else: + log_tags.append(get_default_value(tag)) + + log_file = '_'.join(log_tags) + log_file += '.txt' + return log_file + + +def create_perf_jobs(io_op_desc, log_dir, cmd_lines): + py_cmd = [os.path.join(script_path(), PERF_SCRIPT)] + + perf_jobs = [] + for cmd in cmd_lines: + log_file = os.path.join(log_dir, get_log_file(io_op_desc, cmd)) + job = Job(cmd_line=py_cmd + cmd, output_file=log_file) + perf_jobs.append(job) + + return perf_jobs + + +def script_path(): + return os.path.dirname(os.path.realpath(sys.argv[0])) + + +def async_io_setup(): + return AsyncIOBuilder().is_compatible() + + +def gds_io_setup(): + return GDSBuilder().is_compatible() + + +def remove_folder(folder): + assert os.path.isdir(folder), f"Error: cannot remove {folder} - folder not found" + shutil.rmtree(folder) + + +def run_read_sweep(sweep_config, flush_cache_job, sync_job, cmd_lines): + read_cmd_lines = [[f'--read {sweep_config.other_options}'] + cmd for cmd in cmd_lines] + # dump_cmd_lines(cmd_lines) + + log_folder = os.path.join(sweep_config.log_dir, f'{READ_LOG_DIR}') + os.makedirs(log_folder, exist_ok=True) + + perf_jobs = create_perf_jobs(io_op_desc=READ_OP_DESC, log_dir=log_folder, cmd_lines=read_cmd_lines) + + launch_sweep(sweep_jobs=perf_jobs, + sync_job=sync_job, + flush_cache_job=flush_cache_job, + verbose=sweep_config.verbose) + + +def run_write_sweep(sweep_config, flush_cache_job, sync_job, cmd_lines): + write_cmd_lines = [[f'{sweep_config.other_options}'] + cmd for cmd in cmd_lines] + # dump_cmd_lines(write_cmd_lines) + + log_folder = os.path.join(sweep_config.log_dir, f'{WRITE_LOG_DIR}') + os.makedirs(log_folder, exist_ok=True) + + perf_jobs = create_perf_jobs(io_op_desc=WRITE_OP_DESC, log_dir=log_folder, cmd_lines=write_cmd_lines) + + launch_sweep(sweep_jobs=perf_jobs, + sync_job=sync_job, + flush_cache_job=flush_cache_job, + verbose=sweep_config.verbose) + + +def sweep_main(args): + sweep_config = SweepConfig(args) + cmd_lines = get_sweep_cmd_lines(sweep_config.search_space) + + if sweep_config.flush_cache: + flush_cache_job = Job(cmd_line=['sudo', 'bash -c', "'echo 1 > /proc/sys/vm/drop_caches'"]) + else: + flush_cache_job = None + + sync_job = Job(cmd_line=['sync']) + + if sweep_config.read: + run_read_sweep(sweep_config, flush_cache_job, sync_job, cmd_lines) + + if sweep_config.write: + run_write_sweep(sweep_config, flush_cache_job, sync_job, cmd_lines) + + +def main(): + args = parse_sweep_arguments() + print(f"Running DeepNVMe performance sweep on {args.nvme_dir}") + sweep_main(args) + + +if __name__ == "__main__": + sweep_main() diff --git a/deepspeed/nvme/perf_sweep_utils.py b/deepspeed/nvme/perf_sweep_utils.py new file mode 100644 index 000000000000..e6832c1baa49 --- /dev/null +++ b/deepspeed/nvme/perf_sweep_utils.py @@ -0,0 +1,13 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +SCRIPT_PREFIX = '_aio_bench' +WRITE_OP_DESC = 'write' +READ_OP_DESC = 'read' +READ_IO_DIR = f'{SCRIPT_PREFIX}_{READ_OP_DESC}_io' +WRITE_IO_DIR = f'{SCRIPT_PREFIX}_{WRITE_OP_DESC}_io' +BENCH_LOG_DIR = f'{SCRIPT_PREFIX}_logs' +READ_LOG_DIR = f'{SCRIPT_PREFIX}_{READ_OP_DESC}_logs' +WRITE_LOG_DIR = f'{SCRIPT_PREFIX}_{WRITE_OP_DESC}_logs' diff --git a/deepspeed/nvme/test_ds_aio.py b/deepspeed/nvme/test_ds_aio.py new file mode 100755 index 000000000000..a17350414739 --- /dev/null +++ b/deepspeed/nvme/test_ds_aio.py @@ -0,0 +1,25 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import multiprocessing as mp +from .ds_aio_basic import aio_basic_multiprocessing +from .ds_aio_handle import aio_handle_multiprocessing +from .ds_aio_args import get_validated_args + + +def ds_io_main(): + print(f'Testing deepspeed_aio python frontend') + + args = get_validated_args() + mp.set_start_method('spawn') + multiprocess_function = aio_handle_multiprocessing if args.handle else aio_basic_multiprocessing + multiprocess_function(args, args.read) + + +if __name__ == "__main__": + ds_io_main() diff --git a/deepspeed/nvme/test_ds_aio_utils.py b/deepspeed/nvme/test_ds_aio_utils.py new file mode 100755 index 000000000000..cf167f647460 --- /dev/null +++ b/deepspeed/nvme/test_ds_aio_utils.py @@ -0,0 +1,81 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" + +import os +from .ds_aio_job import Job, run_job + +BYTES_PER_GB = 1024**3 +BYTES_PER_MB = 1024**2 +BYTES_PER_KB = 1024 +LOG_TIDS = [0] + + +def task_log(tid, msg, force=False): + if force or tid in LOG_TIDS: + print(f'tid {tid}: {msg}') + + +def task_barrier(barrier, num_parties): + assert barrier.parties == num_parties + barrier.wait() + assert barrier.broken == False + + +def report_results(args, read_op, pool_results): + #print(f'pool_results = {pool_results}') + io_string = 'Read' if read_op else 'Write' + if None in pool_results: + print(f'Failure in one of {args.threads} {io_string} processes') + return + + total_bytes = sum([num_bytes for _, _, num_bytes in pool_results]) + + task_latency_sec = max([sec for _, sec, _ in pool_results]) + task_speed_GB = 0 if task_latency_sec == 0 else total_bytes / task_latency_sec / BYTES_PER_GB + print(f'Task {io_string} Latency = {task_latency_sec} sec') + print(f'Task {io_string} Speed = {task_speed_GB} GB/sec') + + e2e_latency_sec = max([sec for sec, _, _ in pool_results]) + e2e_speed_GB = 0 if e2e_latency_sec == 0 else total_bytes / e2e_latency_sec / BYTES_PER_GB + print(f'E2E {io_string} Latency = {e2e_latency_sec} sec') + print(f'E2E {io_string} Speed = {e2e_speed_GB} GB/sec') + + +def get_block_size_and_count(io_bytes): + if io_bytes > BYTES_PER_MB and io_bytes % BYTES_PER_MB == 0: + block_size = BYTES_PER_MB + block_size_string = '1M' + else: + assert io_bytes % BYTES_PER_KB == 0 + block_size = BYTES_PER_KB + block_size_string = '1K' + block_count = io_bytes / block_size + + return block_size_string, int(block_count) + + +def refine_integer_value(value): + unit_dict = {'K': 1024, 'M': 1024**2, 'G': 1024**3} + + if value[-1] in list(unit_dict.keys()): + int_value = int(value[:-1]) * unit_dict[value[-1]] + return int_value + return int(value) + + +def create_filename(folder, read_op, size, tid): + io_string = "read" if read_op else "write" + return os.path.join(folder, f'_aio_{io_string}_{size}.pt.{tid}') + + +def create_file(filename, num_bytes): + block_size, block_count = get_block_size_and_count(num_bytes) + dd_job = Job(cmd_line=[f'dd if=/dev/urandom of={filename} bs={block_size} count={block_count}']) + print(f'[Start] Create {filename} of {num_bytes} bytes by running {dd_job.cmd()} ....') + run_job(dd_job) + print(f'[Done] Create read file of {num_bytes} bytes by running {dd_job.cmd()} ....') diff --git a/deepspeed/nvme/validate_async_io.py b/deepspeed/nvme/validate_async_io.py new file mode 100644 index 000000000000..10fb638347bc --- /dev/null +++ b/deepspeed/nvme/validate_async_io.py @@ -0,0 +1,10 @@ +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +""" +Functionality of swapping optimizer tensors to/from (NVMe) storage devices. +""" +from deepspeed.ops.op_builder import AsyncIOBuilder +assert AsyncIOBuilder().is_compatible() +assert AsyncIOBuilder().load() diff --git a/deepspeed/runtime/pipe/p2p.py b/deepspeed/runtime/pipe/p2p.py index 2b12a9573c4b..ed6d80b8d4fb 100644 --- a/deepspeed/runtime/pipe/p2p.py +++ b/deepspeed/runtime/pipe/p2p.py @@ -3,7 +3,7 @@ # DeepSpeed Team -import pickle +import msgpack import typing import torch @@ -96,7 +96,7 @@ def wait(): def send_obj(msg: typing.Any, dest: int): """Send an arbitrary python object to ``dest``. - Note: ``msg`` must be pickleable. + Note: ``msg`` must be serializable by msgpack. WARN: This incurs a CPU -> GPU transfer and should be used sparingly for performance reasons. @@ -106,7 +106,7 @@ def send_obj(msg: typing.Any, dest: int): dest (int): Destination rank. """ # serialize the message - msg = pickle.dumps(msg) + msg = msgpack.packb(msg) # construct a tensor to send msg = torch.ByteTensor(torch.ByteStorage.from_buffer(msg)).to(get_accelerator().device_name()) @@ -133,7 +133,7 @@ def recv_obj(sender: int) -> typing.Any: msg = torch.empty(length.item(), dtype=torch.uint8).to(get_accelerator().device_name()) dist.recv(msg, src=sender) - msg = pickle.loads(msg.cpu().numpy().tobytes()) + msg = msgpack.unpackb(msg.cpu().numpy().tobytes()) def _to(x): """Recursively move to the current device.""" diff --git a/deepspeed/runtime/zero/parameter_offload.py b/deepspeed/runtime/zero/parameter_offload.py index 92702edb733b..1ce2414a1e17 100644 --- a/deepspeed/runtime/zero/parameter_offload.py +++ b/deepspeed/runtime/zero/parameter_offload.py @@ -38,7 +38,7 @@ def _apply_forward_and_backward_to_tensors_only(module, forward_function, backwa class ZeROOrderedDict(OrderedDict): - def __init__(self, parent_module, *args, **kwargs): + def __init__(self, parent_module=None, *args, **kwargs): """A replacement for ``collections.OrderedDict`` to detect external ZeRO params. Args: @@ -56,7 +56,7 @@ def __getitem__(self, key): if param is None: return param - if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if hasattr(param, "ds_status") and param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if self._parent_module._parameters._in_forward: register_external_parameter(FWD_MODULE_STACK[-1], param) param.all_gather() diff --git a/docs/_tutorials/deepnvme.md b/docs/_tutorials/deepnvme.md index 480bcf2d95df..70c6ac097963 100644 --- a/docs/_tutorials/deepnvme.md +++ b/docs/_tutorials/deepnvme.md @@ -188,7 +188,7 @@ This tutorial has been significantly improved by feedback from [Guanhua Wang](ht ## Appendix ### Advanced Handle Creation -Achieving peak I/O performance with DeepNVMe requires careful configuration of handle creation. In particular, the parameters of `aio_handle` and `gds_handle` constructors are performance-critical because they determine how efficiently DeepNVMe interacts with the underlying storage subsystem (i.e., `libaio`, GDS, and SSD). For convenience we make it possible to create handles using default parameter values which will provide decent performance in most scenarios. However, squeezing out every available performance in your environment will likely require tuning the constructor parameters, namely `block_size`, `queue_depth`, `single_submit`, `overlap_events`, and `num_threads`. The `aio_handle` constructor parameters and default values are illustrated below: +Achieving peak I/O performance with DeepNVMe requires careful configuration of handle creation. In particular, the parameters of `aio_handle` and `gds_handle` constructors are performance-critical because they determine how efficiently DeepNVMe interacts with the underlying storage subsystem (i.e., `libaio`, GDS, PCIe, and SSD). For convenience we make it possible to create handles using default parameter values which will provide decent performance in most scenarios. However, squeezing out every available performance in your environment will likely require tuning the constructor parameters, namely `block_size`, `queue_depth`, `single_submit`, `overlap_events`, and `num_threads`. The `aio_handle` constructor parameters and default values are illustrated below: ```bash >>> from deepspeed.ops.op_builder import AsyncIOBuilder >>> help(AsyncIOBuilder().load().aio_handle()) @@ -208,6 +208,56 @@ class aio_handle(pybind11_builtins.pybind11_object) | AIO handle constructor ``` +### Performance Tuning +As discussed [earlier](#advanced-handle-creation), achieving peak DeepNVMe performance for a target workload or environment requires using optimally configured `aio_handle` or `gds_handle` handles. For configuration convenience, we provide a utility called `ds_nvme_tune` to automate the discovery of optimal DeepNVMe configurations. `ds_nvme_tune` automatically explores a user-specified or default configuration space and recommends the option that provides the best read and write performance. Below is an example usage of `ds_nvme_tune` to tune `aio_handle` data transfers between GPU memory and a local NVVMe SSD mounted on `/local_nvme`. This example used the default configuration space of `ds_nvme_tune` for tuning. + +```bash +$ ds_nvme_tune --nvme_dir /local_nvme --gpu +Running DeepNVMe performance tuning on ['/local_nvme/'] +Best performance (GB/sec): read = 3.69, write = 3.18 +{ + "aio": { + "single_submit": "false", + "overlap_events": "true", + "num_threads": 8, + "queue_depth": 32, + "block_size": 1048576 + } +} +``` +The above tuning was executed on a Lambda workstation equipped with two NVIDIA A6000-48GB GPUs, 252GB of DRAM, and a [CS3040 NVMe 2TB SDD](https://www.pny.com/CS3040-M2-NVMe-SSD?sku=M280CS3040-2TB-RB) with peak read and write speeds of 5.6 GB/s and 4.3 GB/s respectively. The tuning required about four and half minutes. Based on the results, one can expect to achieve read and write transfer speeds of 3.69 GB/sec and 3.18 GB/sec respectively by using an `aio_handle` configured as below. + +```python +>>> from deepspeed.ops.op_builder import AsyncIOBuilder +>>> h = AsyncIOBuilder().load().aio_handle(block_size=1048576, + queue_depth=32, + single_submit=False, + overlap_events=True, + num_threads=8) +``` + + +The full command line options of `ds_nvme_tune` can be obtained via the normal `-h` or `--help`. +```bash +usage: ds_nvme_tune [-h] --nvme_dir NVME_DIR [NVME_DIR ...] [--sweep_config SWEEP_CONFIG] [--no_read] [--no_write] [--io_size IO_SIZE] [--gpu] [--gds] [--flush_page_cache] [--log_dir LOG_DIR] [--loops LOOPS] [--verbose] + +options: + -h, --help show this help message and exit + --nvme_dir NVME_DIR [NVME_DIR ...] + Directory in which to perform I/O tests. A writeable directory on a NVMe device. + --sweep_config SWEEP_CONFIG + Performance sweep configuration json file. + --no_read Disable read performance measurements. + --no_write Disable write performance measurements. + --io_size IO_SIZE Number of I/O bytes to read/write for performance measurements. + --gpu Test tensor transfers between GPU device and NVME device. + --gds Run the sweep over NVIDIA GPUDirectStorage operator + --flush_page_cache Page cache will not be flushed and reported read speeds may be higher than actual ***Requires sudo access***. + --log_dir LOG_DIR Output directory for performance log files. Default is ./_aio_bench_logs + --loops LOOPS Count of operation repetitions + --verbose Print debugging information. +``` + ### DeepNVMe APIs For convenience, we provide listing and brief descriptions of the DeepNVMe APIs. diff --git a/op_builder/mlu/__init__.py b/op_builder/mlu/__init__.py new file mode 100644 index 000000000000..db12afbbf20e --- /dev/null +++ b/op_builder/mlu/__init__.py @@ -0,0 +1,12 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team +'''Copyright The Microsoft DeepSpeed Team''' + +# MLU related operators will be added in the future. +from .no_impl import NotImplementedBuilder +from .cpu_adagrad import CPUAdagradBuilder +from .cpu_adam import CPUAdamBuilder +from .fused_adam import FusedAdamBuilder diff --git a/op_builder/mlu/builder.py b/op_builder/mlu/builder.py new file mode 100644 index 000000000000..17b9723ffcc1 --- /dev/null +++ b/op_builder/mlu/builder.py @@ -0,0 +1,35 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +try: + # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed + # if successful this also means we're doing a local install and not JIT compile path + from op_builder import __deepspeed__ # noqa: F401 # type: ignore + from op_builder.builder import OpBuilder +except ImportError: + from deepspeed.ops.op_builder.builder import OpBuilder + + +class MLUOpBuilder(OpBuilder): + + def builder(self): + from torch.utils.cpp_extension import CppExtension as ExtensionBuilder + + compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} + + cpp_ext = ExtensionBuilder(name=self.absolute_name(), + sources=self.strip_empty_entries(self.sources()), + include_dirs=self.strip_empty_entries(self.include_paths()), + libraries=self.strip_empty_entries(self.libraries_args()), + extra_compile_args=compile_args) + + return cpp_ext + + def cxx_args(self): + return ['-O3', '-g', '-Wno-reorder'] + + def libraries_args(self): + return [] diff --git a/op_builder/mlu/cpu_adagrad.py b/op_builder/mlu/cpu_adagrad.py new file mode 100644 index 000000000000..68b7bbe514ee --- /dev/null +++ b/op_builder/mlu/cpu_adagrad.py @@ -0,0 +1,24 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +from .builder import MLUOpBuilder + + +class CPUAdagradBuilder(MLUOpBuilder): + BUILD_VAR = "DS_BUILD_CPU_ADAGRAD" + NAME = "cpu_adagrad" + + def __init__(self): + super().__init__(name=self.NAME) + + def absolute_name(self): + return f'deepspeed.ops.adagrad.{self.NAME}_op' + + def sources(self): + return ['csrc/adagrad/cpu_adagrad.cpp'] + + def include_paths(self): + return ['csrc/includes'] diff --git a/op_builder/mlu/cpu_adam.py b/op_builder/mlu/cpu_adam.py new file mode 100644 index 000000000000..b3c8e476bf39 --- /dev/null +++ b/op_builder/mlu/cpu_adam.py @@ -0,0 +1,28 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +from .builder import MLUOpBuilder + + +class CPUAdamBuilder(MLUOpBuilder): + BUILD_VAR = "DS_BUILD_CPU_ADAM" + NAME = "cpu_adam" + + def __init__(self): + super().__init__(name=self.NAME) + + def absolute_name(self): + return f'deepspeed.ops.adam.{self.NAME}_op' + + def sources(self): + return ['csrc/adam/cpu_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp'] + + def libraries_args(self): + args = super().libraries_args() + return args + + def include_paths(self): + return ['csrc/includes'] diff --git a/op_builder/mlu/fused_adam.py b/op_builder/mlu/fused_adam.py new file mode 100644 index 000000000000..0198db7cb276 --- /dev/null +++ b/op_builder/mlu/fused_adam.py @@ -0,0 +1,39 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +from .builder import MLUOpBuilder +import torch + + +class MLUFusedAdam: + + @staticmethod + def multi_tensor_adam(chunk_size, noop_flag_buffer, tensor_lists, lr, beta1, beta2, epsilon, step, adam_w_mode, + bias_correction, weight_decay, *args): + + torch.ops.torch_mlu.fused_adam(noop_flag_buffer, tensor_lists[0], tensor_lists[1], tensor_lists[2], + tensor_lists[3], lr, beta1, beta2, epsilon, step, adam_w_mode, bias_correction, + weight_decay) + + +class FusedAdamBuilder(MLUOpBuilder): + BUILD_VAR = "DS_BUILD_FUSED_ADAM" + NAME = "fused_adam" + + def __init__(self): + super().__init__(name=self.NAME) + + def absolute_name(self): + return f'deepspeed.ops.adam.{self.NAME}_op' + + def sources(self): + return [] + + def include_paths(self): + return [] + + def load(self, verbose=True): + return MLUFusedAdam diff --git a/op_builder/mlu/no_impl.py b/op_builder/mlu/no_impl.py new file mode 100644 index 000000000000..375c148b4a5e --- /dev/null +++ b/op_builder/mlu/no_impl.py @@ -0,0 +1,34 @@ +# Copyright (c) Microsoft Corporation. +# Copyright (c) 2024 Cambricon Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +from .builder import MLUOpBuilder + + +class NotImplementedBuilder(MLUOpBuilder): + BUILD_VAR = "DS_BUILD_NOT_IMPLEMENTED" + NAME = "deepspeed_not_implemented" + + def __init__(self, name=None): + name = self.NAME if name is None else name + super().__init__(name=name) + + def absolute_name(self): + return f'deepspeed.ops.comm.{self.NAME}_op' + + def load(self, verbose=True): + raise ValueError("This op had not been implemented on MLU backend.") + + def sources(self): + return [] + + def cxx_args(self): + return [] + + def extra_ldflags(self): + return [] + + def include_paths(self): + return [] diff --git a/op_builder/xpu/async_io.py b/op_builder/xpu/async_io.py index 7ed527e016fa..6a6798eaeb9c 100644 --- a/op_builder/xpu/async_io.py +++ b/op_builder/xpu/async_io.py @@ -21,11 +21,18 @@ def absolute_name(self): def sources(self): return [ - 'csrc/aio/py_lib/deepspeed_py_copy.cpp', 'csrc/aio/py_lib/py_ds_aio.cpp', - 'csrc/aio/py_lib/deepspeed_py_aio.cpp', 'csrc/aio/py_lib/deepspeed_py_aio_handle.cpp', - 'csrc/aio/py_lib/deepspeed_aio_thread.cpp', 'csrc/aio/common/deepspeed_aio_utils.cpp', - 'csrc/aio/common/deepspeed_aio_common.cpp', 'csrc/aio/common/deepspeed_aio_types.cpp', - 'csrc/aio/py_lib/deepspeed_pin_tensor.cpp' + 'csrc/aio/py_lib/deepspeed_py_copy.cpp', + 'csrc/aio/py_lib/py_ds_aio.cpp', + 'csrc/aio/py_lib/deepspeed_py_aio.cpp', + 'csrc/aio/py_lib/deepspeed_py_aio_handle.cpp', + 'csrc/aio/py_lib/deepspeed_aio_thread.cpp', + 'csrc/aio/common/deepspeed_aio_utils.cpp', + 'csrc/aio/common/deepspeed_aio_common.cpp', + 'csrc/aio/common/deepspeed_aio_types.cpp', + 'csrc/aio/py_lib/deepspeed_pin_tensor.cpp', + 'csrc/aio/py_lib/deepspeed_py_io_handle.cpp', + 'csrc/xpu/aio/deepspeed_cpu_op.cpp', + 'csrc/aio/py_lib/deepspeed_aio_op_desc.cpp', ] def include_paths(self): diff --git a/requirements/requirements.txt b/requirements/requirements.txt index 70c94a745435..296398f680cc 100755 --- a/requirements/requirements.txt +++ b/requirements/requirements.txt @@ -1,4 +1,5 @@ hjson +msgpack ninja numpy packaging>=20.0 diff --git a/setup.py b/setup.py index 1b6768d1b2c3..e39d8c7e05a3 100755 --- a/setup.py +++ b/setup.py @@ -298,7 +298,7 @@ def op_enabled(op_name): else: scripts = [ 'bin/deepspeed', 'bin/deepspeed.pt', 'bin/ds', 'bin/ds_ssh', 'bin/ds_report', 'bin/ds_bench', 'bin/dsr', - 'bin/ds_elastic' + 'bin/ds_elastic', 'bin/ds_nvme_tune', 'bin/ds_io' ] start_time = time.time()