From 9a3c79e0a8d8c42daa6c2421f0f386d037cfe8ec Mon Sep 17 00:00:00 2001 From: rafijacSense <94111907+rafijacSense@users.noreply.github.com> Date: Sun, 7 Apr 2024 06:28:45 -0400 Subject: [PATCH] switched val to test --- website/docs/Use-Cases/Task-Oriented-AutoML.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/website/docs/Use-Cases/Task-Oriented-AutoML.md b/website/docs/Use-Cases/Task-Oriented-AutoML.md index 97d64010d4..f7b4e5da87 100644 --- a/website/docs/Use-Cases/Task-Oriented-AutoML.md +++ b/website/docs/Use-Cases/Task-Oriented-AutoML.md @@ -74,8 +74,8 @@ The optimization metric is specified via the `metric` argument. It can be either ```python def custom_metric( - X_val, - y_val, + X_test, + y_test, estimator, labels, X_train, @@ -93,8 +93,8 @@ For example, ```python def custom_metric( - X_val, - y_val, + X_test, + y_test, estimator, labels, X_train, @@ -107,9 +107,9 @@ def custom_metric( import time start = time.time() - y_pred = estimator.predict_proba(X_val) - pred_time = (time.time() - start) / len(X_val) - val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val) + y_pred = estimator.predict_proba(X_test) + pred_time = (time.time() - start) / len(X_test) + val_loss = log_loss(y_test, y_pred, labels=labels, sample_weight=weight_val) y_pred = estimator.predict_proba(X_train) train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train) alpha = 0.5