diff --git a/cvat/apps/dataset_manager/formats/LibriVox.py b/cvat/apps/dataset_manager/formats/LibriVox.py new file mode 100644 index 000000000000..8dce61a43284 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/LibriVox.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="LibriVox", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/VCTK_Corpus.py b/cvat/apps/dataset_manager/formats/VCTK_Corpus.py new file mode 100644 index 000000000000..af938773ebbb --- /dev/null +++ b/cvat/apps/dataset_manager/formats/VCTK_Corpus.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="VCTK Corpus", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/VoxCeleb.py b/cvat/apps/dataset_manager/formats/VoxCeleb.py new file mode 100644 index 000000000000..3a0228b59814 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/VoxCeleb.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="VoxCeleb", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/Voxpopuli.py b/cvat/apps/dataset_manager/formats/Voxpopuli.py new file mode 100644 index 000000000000..e31c549177a2 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/Voxpopuli.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("normalized_text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="Voxpopuli", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/aud_common_voice.py b/cvat/apps/dataset_manager/formats/aud_common_voice.py index bd1457d819e0..417d90965788 100644 --- a/cvat/apps/dataset_manager/formats/aud_common_voice.py +++ b/cvat/apps/dataset_manager/formats/aud_common_voice.py @@ -4,16 +4,17 @@ # SPDX-License-Identifier: MIT - - - import os.path as osp from glob import glob from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, - import_dm_annotations, match_dm_item, find_dataset_root) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + import_dm_annotations, + match_dm_item, + find_dataset_root, +) from cvat.apps.dataset_manager.util import make_zip_archive from datumaro.components.extractor import DatasetItem from datumaro.components.project import Dataset @@ -21,42 +22,48 @@ from .registry import dm_env, exporter, importer from cvat.apps.engine.log import ServerLogManager + slogger = ServerLogManager(__name__) -@exporter(name='YOLO', ext='ZIP', version='1.1') +@exporter(name="YOLO", ext="ZIP", version="1.1") def _export(dst_file, temp_dir, instance_data, save_images=False): slogger.glob.info("HEYLO YOLO EXPORTER AUDINO") # slogger.glob.debug() - dataset = Dataset.from_extractors(GetCVATDataExtractor( - instance_data, include_images=save_images), env=dm_env) + dataset = Dataset.from_extractors( + GetCVATDataExtractor(instance_data, include_images=save_images), env=dm_env + ) - dataset.export(temp_dir, 'yolo', save_images=save_images) + dataset.export(temp_dir, "yolo", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='YOLO', ext='ZIP', version='1.1') + +@importer(name="YOLO", ext="ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) image_info = {} - frames = [YoloExtractor.name_from_path(osp.relpath(p, temp_dir)) - for p in glob(osp.join(temp_dir, '**', '*.txt'), recursive=True)] + frames = [ + YoloExtractor.name_from_path(osp.relpath(p, temp_dir)) + for p in glob(osp.join(temp_dir, "**", "*.txt"), recursive=True) + ] root_hint = find_dataset_root( - [DatasetItem(id=frame) for frame in frames], instance_data) + [DatasetItem(id=frame) for frame in frames], instance_data + ) for frame in frames: frame_info = None try: - frame_id = match_dm_item(DatasetItem(id=frame), instance_data, - root_hint=root_hint) + frame_id = match_dm_item( + DatasetItem(id=frame), instance_data, root_hint=root_hint + ) frame_info = instance_data.frame_info[frame_id] - except Exception: # nosec + except Exception: # nosec pass if frame_info is not None: - image_info[frame] = (frame_info['height'], frame_info['width']) + image_info[frame] = (frame_info["height"], frame_info["width"]) - dataset = Dataset.import_from(temp_dir, 'yolo', - env=dm_env, image_info=image_info) + dataset = Dataset.import_from(temp_dir, "yolo", env=dm_env, image_info=image_info) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/camvid.py b/cvat/apps/dataset_manager/formats/camvid.py index 75cea9e98bd4..dcbc72c94189 100644 --- a/cvat/apps/dataset_manager/formats/camvid.py +++ b/cvat/apps/dataset_manager/formats/camvid.py @@ -6,8 +6,10 @@ from datumaro.components.dataset import Dataset from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -15,30 +17,35 @@ from .utils import make_colormap -@exporter(name='CamVid', ext='ZIP', version='1.0') +@exporter(name="CamVid", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('boxes_to_masks') - dataset.transform('merge_instance_segments') + dataset.transform("polygons_to_masks") + dataset.transform("boxes_to_masks") + dataset.transform("merge_instance_segments") label_map = make_colormap(instance_data) - dataset.export(temp_dir, 'camvid', - save_images=save_images, apply_colormap=True, - label_map={label: label_map[label][0] for label in label_map}) + dataset.export( + temp_dir, + "camvid", + save_images=save_images, + apply_colormap=True, + label_map={label: label_map[label][0] for label in label_map}, + ) make_zip_archive(temp_dir, dst_file) -@importer(name='CamVid', ext='ZIP', version='1.0') + +@importer(name="CamVid", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) # We do not run detect_dataset before import because the Camvid format # has problem with the dataset detection in case of empty annotation file(s) # Details in: https://github.com/cvat-ai/datumaro/issues/43 - dataset = Dataset.import_from(temp_dir, 'camvid', env=dm_env) + dataset = Dataset.import_from(temp_dir, "camvid", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/cityscapes.py b/cvat/apps/dataset_manager/formats/cityscapes.py index ea39578ea3f3..b82accdca22c 100644 --- a/cvat/apps/dataset_manager/formats/cityscapes.py +++ b/cvat/apps/dataset_manager/formats/cityscapes.py @@ -9,8 +9,11 @@ from datumaro.plugins.cityscapes_format import write_label_map from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -18,33 +21,43 @@ from .utils import make_colormap -@exporter(name='Cityscapes', ext='ZIP', version='1.0') +@exporter(name="Cityscapes", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('boxes_to_masks') - dataset.transform('merge_instance_segments') + dataset.transform("polygons_to_masks") + dataset.transform("boxes_to_masks") + dataset.transform("merge_instance_segments") - dataset.export(temp_dir, 'cityscapes', save_images=save_images, - apply_colormap=True, label_map={label: info[0] - for label, info in make_colormap(instance_data).items()}) + dataset.export( + temp_dir, + "cityscapes", + save_images=save_images, + apply_colormap=True, + label_map={ + label: info[0] for label, info in make_colormap(instance_data).items() + }, + ) make_zip_archive(temp_dir, dst_file) -@importer(name='Cityscapes', ext='ZIP', version='1.0') + +@importer(name="Cityscapes", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - labelmap_file = osp.join(temp_dir, 'label_colors.txt') + labelmap_file = osp.join(temp_dir, "label_colors.txt") if not osp.isfile(labelmap_file): - colormap = {label: info[0] - for label, info in make_colormap(instance_data).items()} + colormap = { + label: info[0] for label, info in make_colormap(instance_data).items() + } write_label_map(labelmap_file, colormap) - detect_dataset(temp_dir, format_name='cityscapes', importer= dm_env.importers.get('cityscapes')) - dataset = Dataset.import_from(temp_dir, 'cityscapes', env=dm_env) + detect_dataset( + temp_dir, format_name="cityscapes", importer=dm_env.importers.get("cityscapes") + ) + dataset = Dataset.import_from(temp_dir, "cityscapes", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/coco.py b/cvat/apps/dataset_manager/formats/coco.py index 556feea104e1..4943b0c1a3e0 100644 --- a/cvat/apps/dataset_manager/formats/coco.py +++ b/cvat/apps/dataset_manager/formats/coco.py @@ -9,64 +9,77 @@ from datumaro.components.annotation import AnnotationType from datumaro.plugins.coco_format.importer import CocoImporter -from cvat.apps.dataset_manager.bindings import GetCVATDataExtractor, detect_dataset, \ - import_dm_annotations +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='COCO', ext='ZIP', version='1.0') + +@exporter(name="COCO", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'coco_instances', save_images=save_images, - merge_images=True) + dataset.export( + temp_dir, "coco_instances", save_images=save_images, merge_images=True + ) make_zip_archive(temp_dir, dst_file) -@importer(name='COCO', ext='JSON, ZIP', version='1.0') + +@importer(name="COCO", ext="JSON, ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): if zipfile.is_zipfile(src_file): zipfile.ZipFile(src_file).extractall(temp_dir) # We use coco importer because it gives better error message - detect_dataset(temp_dir, format_name='coco', importer=CocoImporter) - dataset = Dataset.import_from(temp_dir, 'coco_instances', env=dm_env) + detect_dataset(temp_dir, format_name="coco", importer=CocoImporter) + dataset = Dataset.import_from(temp_dir, "coco_instances", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) else: - dataset = Dataset.import_from(src_file.name, - 'coco_instances', env=dm_env) + dataset = Dataset.import_from(src_file.name, "coco_instances", env=dm_env) import_dm_annotations(dataset, instance_data) -@exporter(name='COCO Keypoints', ext='ZIP', version='1.0') + +@exporter(name="COCO Keypoints", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'coco_person_keypoints', save_images=save_images, - merge_images=True) + dataset.export( + temp_dir, + "coco_person_keypoints", + save_images=save_images, + merge_images=True, + ) make_zip_archive(temp_dir, dst_file) -@importer(name='COCO Keypoints', ext='JSON, ZIP', version='1.0') + +@importer(name="COCO Keypoints", ext="JSON, ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): def remove_extra_annotations(dataset): for item in dataset: - annotations = [ann for ann in item.annotations - if ann.type != AnnotationType.bbox] + annotations = [ + ann for ann in item.annotations if ann.type != AnnotationType.bbox + ] item.annotations = annotations if zipfile.is_zipfile(src_file): zipfile.ZipFile(src_file).extractall(temp_dir) # We use coco importer because it gives better error message - detect_dataset(temp_dir, format_name='coco', importer=CocoImporter) - dataset = Dataset.import_from(temp_dir, 'coco_person_keypoints', env=dm_env) + detect_dataset(temp_dir, format_name="coco", importer=CocoImporter) + dataset = Dataset.import_from(temp_dir, "coco_person_keypoints", env=dm_env) remove_extra_annotations(dataset) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) else: - dataset = Dataset.import_from(src_file.name, - 'coco_person_keypoints', env=dm_env) + dataset = Dataset.import_from( + src_file.name, "coco_person_keypoints", env=dm_env + ) remove_extra_annotations(dataset) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/common_voice.py b/cvat/apps/dataset_manager/formats/common_voice.py new file mode 100644 index 000000000000..d0cd4cb47361 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/common_voice.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("sentence", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accents", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="Common Voice", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/cvat.py b/cvat/apps/dataset_manager/formats/cvat.py index 99293fe470d4..6f6e8b98c788 100644 --- a/cvat/apps/dataset_manager/formats/cvat.py +++ b/cvat/apps/dataset_manager/formats/cvat.py @@ -11,21 +11,31 @@ from io import BufferedWriter from typing import Callable -from datumaro.components.annotation import (AnnotationType, Bbox, Label, - LabelCategories, Points, Polygon, - PolyLine, Skeleton) +from datumaro.components.annotation import ( + AnnotationType, + Bbox, + Label, + LabelCategories, + Points, + Polygon, + PolyLine, + Skeleton, +) from datumaro.components.dataset import Dataset, DatasetItem -from datumaro.components.extractor import (DEFAULT_SUBSET_NAME, Extractor, - Importer) +from datumaro.components.extractor import DEFAULT_SUBSET_NAME, Extractor, Importer from datumaro.plugins.cvat_format.extractor import CvatImporter as _CvatImporter from datumaro.util.image import Image from defusedxml import ElementTree -from cvat.apps.dataset_manager.bindings import (ProjectData, CommonData, detect_dataset, - get_defaulted_subset, - import_dm_annotations, - match_dm_item) +from cvat.apps.dataset_manager.bindings import ( + ProjectData, + CommonData, + detect_dataset, + get_defaulted_subset, + import_dm_annotations, + match_dm_item, +) from cvat.apps.dataset_manager.util import make_zip_archive from cvat.apps.engine.frame_provider import FrameProvider @@ -33,19 +43,20 @@ class CvatPath: - IMAGES_DIR = 'images' + IMAGES_DIR = "images" - MEDIA_EXTS = ('.jpg', '.jpeg', '.png') + MEDIA_EXTS = (".jpg", ".jpeg", ".png") + + BUILTIN_ATTRS = {"occluded", "outside", "keyframe", "track_id"} - BUILTIN_ATTRS = {'occluded', 'outside', 'keyframe', 'track_id'} class CvatExtractor(Extractor): - _SUPPORTED_SHAPES = ('box', 'polygon', 'polyline', 'points', 'skeleton') + _SUPPORTED_SHAPES = ("box", "polygon", "polyline", "points", "skeleton") def __init__(self, path, subsets=None): assert osp.isfile(path), path rootpath = osp.dirname(path) - images_dir = '' + images_dir = "" if osp.isdir(osp.join(rootpath, CvatPath.IMAGES_DIR)): images_dir = osp.join(rootpath, CvatPath.IMAGES_DIR) self._images_dir = images_dir @@ -71,7 +82,9 @@ def __len__(self): return len(self._items) def get(self, _id, subset=DEFAULT_SUBSET_NAME): - assert subset in self._subsets, '{} not in {}'.format(subset, ', '.join(self._subsets)) + assert subset in self._subsets, "{} not in {}".format( + subset, ", ".join(self._subsets) + ) return super().get(_id, subset) @staticmethod @@ -80,13 +93,13 @@ def _get_subsets_from_anno(path): context = iter(context) for ev, el in context: - if ev == 'start': - if el.tag == 'subsets': + if ev == "start": + if el.tag == "subsets": if el.text is not None: - subsets = el.text.split('\n') + subsets = el.text.split("\n") return subsets - if ev == 'end': - if el.tag == 'meta': + if ev == "end": + if el.tag == "meta": return [DEFAULT_SUBSET_NAME] el.clear() return [DEFAULT_SUBSET_NAME] @@ -99,15 +112,20 @@ def parse_image_dir(image_dir, subset): for file in sorted(glob(image_dir), key=osp.basename): name, ext = osp.splitext(osp.basename(file)) if ext.lower() in CvatPath.MEDIA_EXTS: - items[(subset, name)] = DatasetItem(id=name, annotations=[], - image=Image(path=file), subset=subset or DEFAULT_SUBSET_NAME, + items[(subset, name)] = DatasetItem( + id=name, + annotations=[], + image=Image(path=file), + subset=subset or DEFAULT_SUBSET_NAME, ) - if subsets == [DEFAULT_SUBSET_NAME] and not osp.isdir(osp.join(image_dir, DEFAULT_SUBSET_NAME)): - parse_image_dir(osp.join(image_dir, '*.*'), None) + if subsets == [DEFAULT_SUBSET_NAME] and not osp.isdir( + osp.join(image_dir, DEFAULT_SUBSET_NAME) + ): + parse_image_dir(osp.join(image_dir, "*.*"), None) else: for subset in subsets: - parse_image_dir(osp.join(image_dir, subset, '*.*'), subset) + parse_image_dir(osp.join(image_dir, subset, "*.*"), subset) return items @classmethod @@ -130,33 +148,36 @@ def _parse(cls, path): image = None subset = None for ev, el in context: - if ev == 'start': - if el.tag == 'track': - frame_size = tasks_info[int(el.attrib.get('task_id'))]['frame_size'] \ - if el.attrib.get('task_id') else tuple(tasks_info.values())[0]['frame_size'] + if ev == "start": + if el.tag == "track": + frame_size = ( + tasks_info[int(el.attrib.get("task_id"))]["frame_size"] + if el.attrib.get("task_id") + else tuple(tasks_info.values())[0]["frame_size"] + ) track = { - 'id': el.attrib['id'], - 'label': el.attrib.get('label'), - 'group': int(el.attrib.get('group_id', 0)), - 'height': frame_size[0], - 'width': frame_size[1], + "id": el.attrib["id"], + "label": el.attrib.get("label"), + "group": int(el.attrib.get("group_id", 0)), + "height": frame_size[0], + "width": frame_size[1], } - subset = el.attrib.get('subset') + subset = el.attrib.get("subset") track_shapes = {} - elif el.tag == 'image': + elif el.tag == "image": image = { - 'name': el.attrib.get('name'), - 'frame': el.attrib['id'], - 'width': el.attrib.get('width'), - 'height': el.attrib.get('height'), + "name": el.attrib.get("name"), + "frame": el.attrib["id"], + "width": el.attrib.get("width"), + "height": el.attrib.get("height"), } - subset = el.attrib.get('subset') + subset = el.attrib.get("subset") elif el.tag in cls._SUPPORTED_SHAPES and (track or image): - if shape and shape['type'] == 'skeleton': + if shape and shape["type"] == "skeleton": element_attributes = {} shape_element = { - 'type': 'rectangle' if el.tag == 'box' else el.tag, - 'attributes': element_attributes, + "type": "rectangle" if el.tag == "box" else el.tag, + "attributes": element_attributes, } if track: shape_element.update(track) @@ -165,150 +186,191 @@ def _parse(cls, path): else: attributes = {} shape = { - 'type': 'rectangle' if el.tag == 'box' else el.tag, - 'attributes': attributes, + "type": "rectangle" if el.tag == "box" else el.tag, + "attributes": attributes, } - shape['elements'] = [] + shape["elements"] = [] if track: shape.update(track) - shape['track_id'] = int(track['id']) - shape['frame'] = el.attrib['frame'] + shape["track_id"] = int(track["id"]) + shape["frame"] = el.attrib["frame"] track_elements = [] if image: shape.update(image) - elif el.tag == 'tag' and image: + elif el.tag == "tag" and image: attributes = {} tag = { - 'frame': image['frame'], - 'attributes': attributes, - 'group': int(el.attrib.get('group_id', 0)), - 'label': el.attrib['label'], + "frame": image["frame"], + "attributes": attributes, + "group": int(el.attrib.get("group_id", 0)), + "label": el.attrib["label"], } - subset = el.attrib.get('subset') - elif ev == 'end': - if el.tag == 'attribute' and element_attributes is not None and shape_element is not None: - attr_value = el.text or '' - attr_type = attribute_types.get(el.attrib['name']) - if el.text in ['true', 'false']: - attr_value = attr_value == 'true' - elif attr_type is not None and attr_type != 'text': + subset = el.attrib.get("subset") + elif ev == "end": + if ( + el.tag == "attribute" + and element_attributes is not None + and shape_element is not None + ): + attr_value = el.text or "" + attr_type = attribute_types.get(el.attrib["name"]) + if el.text in ["true", "false"]: + attr_value = attr_value == "true" + elif attr_type is not None and attr_type != "text": try: attr_value = float(attr_value) except ValueError: pass - element_attributes[el.attrib['name']] = attr_value - - if el.tag == 'attribute' and attributes is not None and shape_element is None: - attr_value = el.text or '' - attr_type = attribute_types.get(el.attrib['name']) - if el.text in ['true', 'false']: - attr_value = attr_value == 'true' - elif attr_type is not None and attr_type != 'text': + element_attributes[el.attrib["name"]] = attr_value + + if ( + el.tag == "attribute" + and attributes is not None + and shape_element is None + ): + attr_value = el.text or "" + attr_type = attribute_types.get(el.attrib["name"]) + if el.text in ["true", "false"]: + attr_value = attr_value == "true" + elif attr_type is not None and attr_type != "text": try: attr_value = float(attr_value) except ValueError: pass - attributes[el.attrib['name']] = attr_value - - elif el.tag in cls._SUPPORTED_SHAPES and shape["type"] == "skeleton" and el.tag != "skeleton": - shape_element['label'] = el.attrib.get('label') - shape_element['group'] = int(el.attrib.get('group_id', 0)) - - shape_element['type'] = el.tag - shape_element['z_order'] = int(el.attrib.get('z_order', 0)) - - if el.tag == 'box': - shape_element['points'] = list(map(float, [ - el.attrib['xtl'], el.attrib['ytl'], - el.attrib['xbr'], el.attrib['ybr'], - ])) + attributes[el.attrib["name"]] = attr_value + + elif ( + el.tag in cls._SUPPORTED_SHAPES + and shape["type"] == "skeleton" + and el.tag != "skeleton" + ): + shape_element["label"] = el.attrib.get("label") + shape_element["group"] = int(el.attrib.get("group_id", 0)) + + shape_element["type"] = el.tag + shape_element["z_order"] = int(el.attrib.get("z_order", 0)) + + if el.tag == "box": + shape_element["points"] = list( + map( + float, + [ + el.attrib["xtl"], + el.attrib["ytl"], + el.attrib["xbr"], + el.attrib["ybr"], + ], + ) + ) else: - shape_element['points'] = [] - for pair in el.attrib['points'].split(';'): - shape_element['points'].extend(map(float, pair.split(','))) + shape_element["points"] = [] + for pair in el.attrib["points"].split(";"): + shape_element["points"].extend(map(float, pair.split(","))) - if el.tag == 'points' and el.attrib.get('occluded') == '1': - shape_element['visibility'] = [Points.Visibility.hidden] * (len(shape_element['points']) // 2) + if el.tag == "points" and el.attrib.get("occluded") == "1": + shape_element["visibility"] = [Points.Visibility.hidden] * ( + len(shape_element["points"]) // 2 + ) else: - shape_element['occluded'] = (el.attrib.get('occluded') == '1') + shape_element["occluded"] = el.attrib.get("occluded") == "1" - if el.tag == 'points' and el.attrib.get('outside') == '1': - shape_element['visibility'] = [Points.Visibility.absent] * (len(shape_element['points']) // 2) + if el.tag == "points" and el.attrib.get("outside") == "1": + shape_element["visibility"] = [Points.Visibility.absent] * ( + len(shape_element["points"]) // 2 + ) else: - shape_element['outside'] = (el.attrib.get('outside') == '1') + shape_element["outside"] = el.attrib.get("outside") == "1" if track: - shape_element['keyframe'] = (el.attrib.get('keyframe') == '1') - if shape_element['keyframe']: + shape_element["keyframe"] = el.attrib.get("keyframe") == "1" + if shape_element["keyframe"]: track_elements.append(shape_element) else: - shape['elements'].append(shape_element) + shape["elements"].append(shape_element) shape_element = None elif el.tag in cls._SUPPORTED_SHAPES: if track is not None: - shape['frame'] = el.attrib['frame'] - shape['outside'] = (el.attrib.get('outside') == '1') - shape['keyframe'] = (el.attrib.get('keyframe') == '1') + shape["frame"] = el.attrib["frame"] + shape["outside"] = el.attrib.get("outside") == "1" + shape["keyframe"] = el.attrib.get("keyframe") == "1" if image is not None: - shape['label'] = el.attrib.get('label') - shape['group'] = int(el.attrib.get('group_id', 0)) - - shape['type'] = el.tag - shape['occluded'] = (el.attrib.get('occluded') == '1') - shape['z_order'] = int(el.attrib.get('z_order', 0)) - shape['rotation'] = float(el.attrib.get('rotation', 0)) - - if el.tag == 'box': - shape['points'] = list(map(float, [ - el.attrib['xtl'], el.attrib['ytl'], - el.attrib['xbr'], el.attrib['ybr'], - ])) - elif el.tag == 'skeleton': - shape['points'] = [] + shape["label"] = el.attrib.get("label") + shape["group"] = int(el.attrib.get("group_id", 0)) + + shape["type"] = el.tag + shape["occluded"] = el.attrib.get("occluded") == "1" + shape["z_order"] = int(el.attrib.get("z_order", 0)) + shape["rotation"] = float(el.attrib.get("rotation", 0)) + + if el.tag == "box": + shape["points"] = list( + map( + float, + [ + el.attrib["xtl"], + el.attrib["ytl"], + el.attrib["xbr"], + el.attrib["ybr"], + ], + ) + ) + elif el.tag == "skeleton": + shape["points"] = [] else: - shape['points'] = [] - for pair in el.attrib['points'].split(';'): - shape['points'].extend(map(float, pair.split(','))) + shape["points"] = [] + for pair in el.attrib["points"].split(";"): + shape["points"].extend(map(float, pair.split(","))) if track: if shape["type"] == "skeleton" and track_elements: shape["keyframe"] = True - track_shapes[shape['frame']] = shape - track_shapes[shape['frame']]['elements'] = track_elements + track_shapes[shape["frame"]] = shape + track_shapes[shape["frame"]]["elements"] = track_elements track_elements = None elif shape["type"] != "skeleton": - track_shapes[shape['frame']] = shape + track_shapes[shape["frame"]] = shape else: - frame_desc = items.get((subset, shape['frame']), {'annotations': []}) - frame_desc['annotations'].append( - cls._parse_shape_ann(shape, categories)) - items[(subset, shape['frame'])] = frame_desc + frame_desc = items.get( + (subset, shape["frame"]), {"annotations": []} + ) + frame_desc["annotations"].append( + cls._parse_shape_ann(shape, categories) + ) + items[(subset, shape["frame"])] = frame_desc shape = None - elif el.tag == 'tag': - frame_desc = items.get((subset, tag['frame']), {'annotations': []}) - frame_desc['annotations'].append( - cls._parse_tag_ann(tag, categories)) - items[(subset, tag['frame'])] = frame_desc + elif el.tag == "tag": + frame_desc = items.get((subset, tag["frame"]), {"annotations": []}) + frame_desc["annotations"].append( + cls._parse_tag_ann(tag, categories) + ) + items[(subset, tag["frame"])] = frame_desc tag = None - elif el.tag == 'track': + elif el.tag == "track": for track_shape in track_shapes.values(): - frame_desc = items.get((subset, track_shape['frame']), {'annotations': []}) - frame_desc['annotations'].append( - cls._parse_shape_ann(track_shape, categories)) - items[(subset, track_shape['frame'])] = frame_desc + frame_desc = items.get( + (subset, track_shape["frame"]), {"annotations": []} + ) + frame_desc["annotations"].append( + cls._parse_shape_ann(track_shape, categories) + ) + items[(subset, track_shape["frame"])] = frame_desc track = None - elif el.tag == 'image': - frame_desc = items.get((subset, image['frame']), {'annotations': []}) - frame_desc.update({ - 'name': image.get('name'), - 'height': image.get('height'), - 'width': image.get('width'), - 'subset': subset, - }) - items[(subset, image['frame'])] = frame_desc + elif el.tag == "image": + frame_desc = items.get( + (subset, image["frame"]), {"annotations": []} + ) + frame_desc.update( + { + "name": image.get("name"), + "height": image.get("height"), + "width": image.get("width"), + "subset": subset, + } + ) + items[(subset, image["frame"])] = frame_desc image = None el.clear() @@ -317,7 +379,7 @@ def _parse(cls, path): @staticmethod def _parse_meta(context): ev, el = next(context) - if not (ev == 'start' and el.tag == 'annotations'): + if not (ev == "start" and el.tag == "annotations"): raise Exception("Unexpected token ") categories = {} @@ -331,7 +393,8 @@ def _parse_meta(context): # Recursive descent parser el = None - states = ['annotations'] + states = ["annotations"] + def accepted(expected_state, tag, next_state=None): state = states[-1] if state == expected_state and el is not None and el.tag == tag: @@ -340,6 +403,7 @@ def accepted(expected_state, tag, next_state=None): states.append(next_state) return True return False + def consumed(expected_state, tag): state = states[-1] if state == expected_state and el is not None and el.tag == tag: @@ -348,194 +412,269 @@ def consumed(expected_state, tag): return False for ev, el in context: - if ev == 'start': - if accepted('annotations', 'meta'): pass - elif accepted('meta', 'task'): pass - elif accepted('meta', 'project'): pass - elif accepted('project', 'tasks'): pass - elif accepted('tasks', 'task'): pass - elif accepted('task', 'id', next_state='task_id'): pass - elif accepted('task', 'segment'): pass - elif accepted('task', 'mode'): pass - elif accepted('task', 'original_size'): pass - elif accepted('original_size', 'height', next_state='frame_height'): pass - elif accepted('original_size', 'width', next_state='frame_width'): pass - elif accepted('task', 'labels'): pass - elif accepted('project', 'labels'): pass - elif accepted('labels', 'label'): - label = { 'name': None, 'attributes': [] } - elif accepted('label', 'name', next_state='label_name'): pass - elif accepted('label', 'attributes'): pass - elif accepted('attributes', 'attribute'): pass - elif accepted('attribute', 'name', next_state='attr_name'): pass - elif accepted('attribute', 'input_type', next_state='attr_type'): pass - elif accepted('annotations', 'image') or \ - accepted('annotations', 'track') or \ - accepted('annotations', 'tag'): + if ev == "start": + if accepted("annotations", "meta"): + pass + elif accepted("meta", "task"): + pass + elif accepted("meta", "project"): + pass + elif accepted("project", "tasks"): + pass + elif accepted("tasks", "task"): + pass + elif accepted("task", "id", next_state="task_id"): + pass + elif accepted("task", "segment"): + pass + elif accepted("task", "mode"): + pass + elif accepted("task", "original_size"): + pass + elif accepted("original_size", "height", next_state="frame_height"): + pass + elif accepted("original_size", "width", next_state="frame_width"): + pass + elif accepted("task", "labels"): + pass + elif accepted("project", "labels"): + pass + elif accepted("labels", "label"): + label = {"name": None, "attributes": []} + elif accepted("label", "name", next_state="label_name"): + pass + elif accepted("label", "attributes"): + pass + elif accepted("attributes", "attribute"): + pass + elif accepted("attribute", "name", next_state="attr_name"): + pass + elif accepted("attribute", "input_type", next_state="attr_type"): + pass + elif ( + accepted("annotations", "image") + or accepted("annotations", "track") + or accepted("annotations", "tag") + ): break else: pass - elif ev == 'end': - if consumed('meta', 'meta'): + elif ev == "end": + if consumed("meta", "meta"): break - elif consumed('project', 'project'): pass - elif consumed('tasks', 'tasks'): pass - elif consumed('task', 'task'): + elif consumed("project", "project"): + pass + elif consumed("tasks", "tasks"): + pass + elif consumed("task", "task"): tasks_info[task_id] = { - 'frame_size': frame_size, - 'mode': mode, + "frame_size": frame_size, + "mode": mode, } frame_size = [None, None] mode = None - elif consumed('task_id', 'id'): + elif consumed("task_id", "id"): task_id = int(el.text) - elif consumed('segment', 'segment'): pass - elif consumed('mode', 'mode'): + elif consumed("segment", "segment"): + pass + elif consumed("mode", "mode"): mode = el.text - elif consumed('original_size', 'original_size'): pass - elif consumed('frame_height', 'height'): + elif consumed("original_size", "original_size"): + pass + elif consumed("frame_height", "height"): frame_size[0] = int(el.text) - elif consumed('frame_width', 'width'): + elif consumed("frame_width", "width"): frame_size[1] = int(el.text) - elif consumed('label_name', 'name'): - label['name'] = el.text - elif consumed('attr_name', 'name'): - label['attributes'].append({'name': el.text}) - elif consumed('attr_type', 'input_type'): - label['attributes'][-1]['input_type'] = el.text - elif consumed('attribute', 'attribute'): pass - elif consumed('attributes', 'attributes'): pass - elif consumed('label', 'label'): - labels[label['name']] = label['attributes'] + elif consumed("label_name", "name"): + label["name"] = el.text + elif consumed("attr_name", "name"): + label["attributes"].append({"name": el.text}) + elif consumed("attr_type", "input_type"): + label["attributes"][-1]["input_type"] = el.text + elif consumed("attribute", "attribute"): + pass + elif consumed("attributes", "attributes"): + pass + elif consumed("label", "label"): + labels[label["name"]] = label["attributes"] label = None - elif consumed('labels', 'labels'): pass + elif consumed("labels", "labels"): + pass else: pass - assert len(states) == 1 and states[0] == 'annotations', \ + assert len(states) == 1 and states[0] == "annotations", ( "Expected 'meta' section in the annotation file, path: %s" % states + ) - common_attrs = ['occluded'] - if 'interpolation' in map(lambda t: t['mode'], tasks_info.values()): - common_attrs.append('keyframe') - common_attrs.append('outside') - common_attrs.append('track_id') + common_attrs = ["occluded"] + if "interpolation" in map(lambda t: t["mode"], tasks_info.values()): + common_attrs.append("keyframe") + common_attrs.append("outside") + common_attrs.append("track_id") label_cat = LabelCategories(attributes=common_attrs) attribute_types = {} for label, attrs in labels.items(): - attr_names = {v['name'] for v in attrs} + attr_names = {v["name"] for v in attrs} label_cat.add(label, attributes=attr_names) for attr in attrs: - attribute_types[attr['name']] = attr['input_type'] + attribute_types[attr["name"]] = attr["input_type"] categories[AnnotationType.label] = label_cat return categories, tasks_info, attribute_types @classmethod def _parse_shape_ann(cls, ann, categories): - ann_id = ann.get('id', 0) - ann_type = ann['type'] - - attributes = ann.get('attributes') or {} - if 'occluded' in categories[AnnotationType.label].attributes: - attributes['occluded'] = ann.get('occluded', False) - if 'outside' in ann: - attributes['outside'] = ann['outside'] - if 'keyframe' in ann: - attributes['keyframe'] = ann['keyframe'] - if 'track_id' in ann: - attributes['track_id'] = ann['track_id'] - if 'rotation' in ann: - attributes['rotation'] = ann['rotation'] - - group = ann.get('group') - - label = ann.get('label') + ann_id = ann.get("id", 0) + ann_type = ann["type"] + + attributes = ann.get("attributes") or {} + if "occluded" in categories[AnnotationType.label].attributes: + attributes["occluded"] = ann.get("occluded", False) + if "outside" in ann: + attributes["outside"] = ann["outside"] + if "keyframe" in ann: + attributes["keyframe"] = ann["keyframe"] + if "track_id" in ann: + attributes["track_id"] = ann["track_id"] + if "rotation" in ann: + attributes["rotation"] = ann["rotation"] + + group = ann.get("group") + + label = ann.get("label") label_id = categories[AnnotationType.label].find(label)[0] - z_order = ann.get('z_order', 0) - points = ann.get('points', []) - - if ann_type == 'polyline': - return PolyLine(points, label=label_id, z_order=z_order, - id=ann_id, attributes=attributes, group=group) - - elif ann_type == 'polygon': - return Polygon(points, label=label_id, z_order=z_order, - id=ann_id, attributes=attributes, group=group) - - elif ann_type == 'points': - visibility = ann.get('visibility', None) - return Points(points, visibility, label=label_id, z_order=z_order, - id=ann_id, attributes=attributes, group=group) - - elif ann_type == 'box': + z_order = ann.get("z_order", 0) + points = ann.get("points", []) + + if ann_type == "polyline": + return PolyLine( + points, + label=label_id, + z_order=z_order, + id=ann_id, + attributes=attributes, + group=group, + ) + + elif ann_type == "polygon": + return Polygon( + points, + label=label_id, + z_order=z_order, + id=ann_id, + attributes=attributes, + group=group, + ) + + elif ann_type == "points": + visibility = ann.get("visibility", None) + return Points( + points, + visibility, + label=label_id, + z_order=z_order, + id=ann_id, + attributes=attributes, + group=group, + ) + + elif ann_type == "box": x, y = points[0], points[1] w, h = points[2] - x, points[3] - y - return Bbox(x, y, w, h, label=label_id, z_order=z_order, - id=ann_id, attributes=attributes, group=group) - - elif ann_type == 'skeleton': + return Bbox( + x, + y, + w, + h, + label=label_id, + z_order=z_order, + id=ann_id, + attributes=attributes, + group=group, + ) + + elif ann_type == "skeleton": elements = [] - for element in ann.get('elements', []): + for element in ann.get("elements", []): elements.append(cls._parse_shape_ann(element, categories)) - return Skeleton(elements, label=label_id, z_order=z_order, - id=ann_id, attributes=attributes, group=group) + return Skeleton( + elements, + label=label_id, + z_order=z_order, + id=ann_id, + attributes=attributes, + group=group, + ) else: raise NotImplementedError("Unknown annotation type '%s'" % ann_type) @classmethod def _parse_tag_ann(cls, ann, categories): - label = ann.get('label') + label = ann.get("label") label_id = categories[AnnotationType.label].find(label)[0] - group = ann.get('group') - attributes = ann.get('attributes') + group = ann.get("group") + attributes = ann.get("attributes") return Label(label_id, attributes=attributes, group=group) def _load_items(self, parsed, image_items): for (subset, frame_id), item_desc in parsed.items(): - name = item_desc.get('name', 'frame_%06d.PNG' % int(frame_id)) - image = osp.join(self._images_dir, subset, name) if subset else osp.join(self._images_dir, name) - image_size = (item_desc.get('height'), item_desc.get('width')) + name = item_desc.get("name", "frame_%06d.PNG" % int(frame_id)) + image = ( + osp.join(self._images_dir, subset, name) + if subset + else osp.join(self._images_dir, name) + ) + image_size = (item_desc.get("height"), item_desc.get("width")) if all(image_size): image = Image(path=image, size=tuple(map(int, image_size))) - di = image_items.get((subset, osp.splitext(name)[0]), DatasetItem( - id=name, annotations=[], - )) + di = image_items.get( + (subset, osp.splitext(name)[0]), + DatasetItem( + id=name, + annotations=[], + ), + ) di.subset = subset or DEFAULT_SUBSET_NAME - di.annotations = item_desc.get('annotations') - di.attributes = {'frame': int(frame_id)} + di.annotations = item_desc.get("annotations") + di.attributes = {"frame": int(frame_id)} di.media = image if isinstance(image, Image) else di.media image_items[(subset, osp.splitext(name)[0])] = di return image_items -dm_env.extractors.register('cvat', CvatExtractor) + +dm_env.extractors.register("cvat", CvatExtractor) + class CvatImporter(Importer): @classmethod def find_sources(cls, path): - return cls._find_sources_recursive(path, '.xml', 'cvat') + return cls._find_sources_recursive(path, ".xml", "cvat") + -dm_env.importers.register('cvat', CvatImporter) +dm_env.importers.register("cvat", CvatImporter) def pairwise(iterable): a = iter(iterable) return zip(a, a) + def create_xml_dumper(file_object): from xml.sax.saxutils import XMLGenerator + class XmlAnnotationWriter: def __init__(self, file): self.version = "1.1" self.file = file - self.xmlgen = XMLGenerator(self.file, 'utf-8') + self.xmlgen = XMLGenerator(self.file, "utf-8") self._level = 0 - def _indent(self, newline = True): + def _indent(self, newline=True): if newline: self.xmlgen.ignorableWhitespace("\n") self.xmlgen.ignorableWhitespace(" " * self._level) @@ -709,111 +848,163 @@ def close_root(self): def close_document(self): self.xmlgen.endDocument() - return XmlAnnotationWriter(file_object) + def dump_as_cvat_annotation(dumper, annotations): dumper.open_root() dumper.add_meta(annotations.meta) for frame_annotation in annotations.group_by_frame(include_empty=True): frame_id = frame_annotation.frame - image_attrs = OrderedDict([ - ("id", str(frame_id)), - ("name", frame_annotation.name), - ]) + image_attrs = OrderedDict( + [ + ("id", str(frame_id)), + ("name", frame_annotation.name), + ] + ) if isinstance(annotations, ProjectData): - image_attrs.update(OrderedDict([ - ("subset", frame_annotation.subset), - ("task_id", str(frame_annotation.task_id)), - ])) - image_attrs.update(OrderedDict([ - ("width", str(frame_annotation.width)), - ("height", str(frame_annotation.height)) - ])) + image_attrs.update( + OrderedDict( + [ + ("subset", frame_annotation.subset), + ("task_id", str(frame_annotation.task_id)), + ] + ) + ) + image_attrs.update( + OrderedDict( + [ + ("width", str(frame_annotation.width)), + ("height", str(frame_annotation.height)), + ] + ) + ) dumper.open_image(image_attrs) def dump_labeled_shapes(shapes, is_skeleton=False): for shape in shapes: - dump_data = OrderedDict([ - ("label", shape.label), - ("source", shape.source), - ]) + dump_data = OrderedDict( + [ + ("label", shape.label), + ("source", shape.source), + ] + ) if is_skeleton: - dump_data.update(OrderedDict([ - ("outside", str(int(shape.outside))) - ])) + dump_data.update( + OrderedDict([("outside", str(int(shape.outside)))]) + ) - if shape.type != 'skeleton': - dump_data.update(OrderedDict([ - ("occluded", str(int(shape.occluded))) - ])) + if shape.type != "skeleton": + dump_data.update( + OrderedDict([("occluded", str(int(shape.occluded)))]) + ) if shape.type == "rectangle": - dump_data.update(OrderedDict([ - ("xtl", "{:.2f}".format(shape.points[0])), - ("ytl", "{:.2f}".format(shape.points[1])), - ("xbr", "{:.2f}".format(shape.points[2])), - ("ybr", "{:.2f}".format(shape.points[3])) - ])) + dump_data.update( + OrderedDict( + [ + ("xtl", "{:.2f}".format(shape.points[0])), + ("ytl", "{:.2f}".format(shape.points[1])), + ("xbr", "{:.2f}".format(shape.points[2])), + ("ybr", "{:.2f}".format(shape.points[3])), + ] + ) + ) if shape.rotation: - dump_data.update(OrderedDict([ - ("rotation", "{:.2f}".format(shape.rotation)) - ])) + dump_data.update( + OrderedDict([("rotation", "{:.2f}".format(shape.rotation))]) + ) elif shape.type == "ellipse": - dump_data.update(OrderedDict([ - ("cx", "{:.2f}".format(shape.points[0])), - ("cy", "{:.2f}".format(shape.points[1])), - ("rx", "{:.2f}".format(shape.points[2] - shape.points[0])), - ("ry", "{:.2f}".format(shape.points[1] - shape.points[3])) - ])) + dump_data.update( + OrderedDict( + [ + ("cx", "{:.2f}".format(shape.points[0])), + ("cy", "{:.2f}".format(shape.points[1])), + ( + "rx", + "{:.2f}".format(shape.points[2] - shape.points[0]), + ), + ( + "ry", + "{:.2f}".format(shape.points[1] - shape.points[3]), + ), + ] + ) + ) if shape.rotation: - dump_data.update(OrderedDict([ - ("rotation", "{:.2f}".format(shape.rotation)) - ])) + dump_data.update( + OrderedDict([("rotation", "{:.2f}".format(shape.rotation))]) + ) elif shape.type == "cuboid": - dump_data.update(OrderedDict([ - ("xtl1", "{:.2f}".format(shape.points[0])), - ("ytl1", "{:.2f}".format(shape.points[1])), - ("xbl1", "{:.2f}".format(shape.points[2])), - ("ybl1", "{:.2f}".format(shape.points[3])), - ("xtr1", "{:.2f}".format(shape.points[4])), - ("ytr1", "{:.2f}".format(shape.points[5])), - ("xbr1", "{:.2f}".format(shape.points[6])), - ("ybr1", "{:.2f}".format(shape.points[7])), - ("xtl2", "{:.2f}".format(shape.points[8])), - ("ytl2", "{:.2f}".format(shape.points[9])), - ("xbl2", "{:.2f}".format(shape.points[10])), - ("ybl2", "{:.2f}".format(shape.points[11])), - ("xtr2", "{:.2f}".format(shape.points[12])), - ("ytr2", "{:.2f}".format(shape.points[13])), - ("xbr2", "{:.2f}".format(shape.points[14])), - ("ybr2", "{:.2f}".format(shape.points[15])) - ])) + dump_data.update( + OrderedDict( + [ + ("xtl1", "{:.2f}".format(shape.points[0])), + ("ytl1", "{:.2f}".format(shape.points[1])), + ("xbl1", "{:.2f}".format(shape.points[2])), + ("ybl1", "{:.2f}".format(shape.points[3])), + ("xtr1", "{:.2f}".format(shape.points[4])), + ("ytr1", "{:.2f}".format(shape.points[5])), + ("xbr1", "{:.2f}".format(shape.points[6])), + ("ybr1", "{:.2f}".format(shape.points[7])), + ("xtl2", "{:.2f}".format(shape.points[8])), + ("ytl2", "{:.2f}".format(shape.points[9])), + ("xbl2", "{:.2f}".format(shape.points[10])), + ("ybl2", "{:.2f}".format(shape.points[11])), + ("xtr2", "{:.2f}".format(shape.points[12])), + ("ytr2", "{:.2f}".format(shape.points[13])), + ("xbr2", "{:.2f}".format(shape.points[14])), + ("ybr2", "{:.2f}".format(shape.points[15])), + ] + ) + ) elif shape.type == "mask": - dump_data.update(OrderedDict([ - ("rle", f"{list(int (v) for v in shape.points[:-4])}"[1:-1]), - ("left", f"{int(shape.points[-4])}"), - ("top", f"{int(shape.points[-3])}"), - ("width", f"{int(shape.points[-2] - shape.points[-4]) + 1}"), - ("height", f"{int(shape.points[-1] - shape.points[-3]) + 1}"), - ])) - elif shape.type != 'skeleton': - dump_data.update(OrderedDict([ - ("points", ';'.join(( - ','.join(( - "{:.2f}".format(x), - "{:.2f}".format(y) - )) for x, y in pairwise(shape.points)) - )), - ])) + dump_data.update( + OrderedDict( + [ + ( + "rle", + f"{list(int (v) for v in shape.points[:-4])}"[1:-1], + ), + ("left", f"{int(shape.points[-4])}"), + ("top", f"{int(shape.points[-3])}"), + ( + "width", + f"{int(shape.points[-2] - shape.points[-4]) + 1}", + ), + ( + "height", + f"{int(shape.points[-1] - shape.points[-3]) + 1}", + ), + ] + ) + ) + elif shape.type != "skeleton": + dump_data.update( + OrderedDict( + [ + ( + "points", + ";".join( + ( + ",".join( + ("{:.2f}".format(x), "{:.2f}".format(y)) + ) + for x, y in pairwise(shape.points) + ) + ), + ), + ] + ) + ) if not is_skeleton: - dump_data['z_order'] = str(shape.z_order) + dump_data["z_order"] = str(shape.z_order) if shape.group: - dump_data['group_id'] = str(shape.group) + dump_data["group_id"] = str(shape.group) if shape.type == "rectangle": dumper.open_box(dump_data) @@ -836,10 +1027,9 @@ def dump_labeled_shapes(shapes, is_skeleton=False): raise NotImplementedError("unknown shape type") for attr in shape.attributes: - dumper.add_attribute(OrderedDict([ - ("name", attr.name), - ("value", attr.value) - ])) + dumper.add_attribute( + OrderedDict([("name", attr.name), ("value", attr.value)]) + ) if shape.type == "rectangle": dumper.close_box() @@ -863,25 +1053,27 @@ def dump_labeled_shapes(shapes, is_skeleton=False): dump_labeled_shapes(frame_annotation.labeled_shapes) for tag in frame_annotation.tags: - tag_data = OrderedDict([ - ("label", tag.label), - ("source", tag.source), - ]) + tag_data = OrderedDict( + [ + ("label", tag.label), + ("source", tag.source), + ] + ) if tag.group: tag_data["group_id"] = str(tag.group) dumper.open_tag(tag_data) for attr in tag.attributes: - dumper.add_attribute(OrderedDict([ - ("name", attr.name), - ("value", attr.value) - ])) + dumper.add_attribute( + OrderedDict([("name", attr.name), ("value", attr.value)]) + ) dumper.close_tag() dumper.close_image() dumper.close_root() + def dump_as_cvat_interpolation(dumper, annotations): dumper.open_root() dumper.add_meta(annotations.meta) @@ -889,79 +1081,122 @@ def dump_as_cvat_interpolation(dumper, annotations): def dump_shape(shape, element_shapes=None, label=None): dump_data = OrderedDict() if label is None: - dump_data.update(OrderedDict([ - ("frame", str(shape.frame)), - ])) + dump_data.update( + OrderedDict( + [ + ("frame", str(shape.frame)), + ] + ) + ) else: - dump_data.update(OrderedDict([ - ("label", label), - ])) - dump_data.update(OrderedDict([ - ("keyframe", str(int(shape.keyframe))), - ])) + dump_data.update( + OrderedDict( + [ + ("label", label), + ] + ) + ) + dump_data.update( + OrderedDict( + [ + ("keyframe", str(int(shape.keyframe))), + ] + ) + ) if shape.type != "skeleton": - dump_data.update(OrderedDict([ - ("outside", str(int(shape.outside))), - ("occluded", str(int(shape.occluded))), - ])) + dump_data.update( + OrderedDict( + [ + ("outside", str(int(shape.outside))), + ("occluded", str(int(shape.occluded))), + ] + ) + ) if shape.type == "rectangle": - dump_data.update(OrderedDict([ - ("xtl", "{:.2f}".format(shape.points[0])), - ("ytl", "{:.2f}".format(shape.points[1])), - ("xbr", "{:.2f}".format(shape.points[2])), - ("ybr", "{:.2f}".format(shape.points[3])), - ])) + dump_data.update( + OrderedDict( + [ + ("xtl", "{:.2f}".format(shape.points[0])), + ("ytl", "{:.2f}".format(shape.points[1])), + ("xbr", "{:.2f}".format(shape.points[2])), + ("ybr", "{:.2f}".format(shape.points[3])), + ] + ) + ) if shape.rotation: - dump_data.update(OrderedDict([ - ("rotation", "{:.2f}".format(shape.rotation)) - ])) + dump_data.update( + OrderedDict([("rotation", "{:.2f}".format(shape.rotation))]) + ) elif shape.type == "ellipse": - dump_data.update(OrderedDict([ - ("cx", "{:.2f}".format(shape.points[0])), - ("cy", "{:.2f}".format(shape.points[1])), - ("rx", "{:.2f}".format(shape.points[2] - shape.points[0])), - ("ry", "{:.2f}".format(shape.points[1] - shape.points[3])) - ])) + dump_data.update( + OrderedDict( + [ + ("cx", "{:.2f}".format(shape.points[0])), + ("cy", "{:.2f}".format(shape.points[1])), + ("rx", "{:.2f}".format(shape.points[2] - shape.points[0])), + ("ry", "{:.2f}".format(shape.points[1] - shape.points[3])), + ] + ) + ) if shape.rotation: - dump_data.update(OrderedDict([ - ("rotation", "{:.2f}".format(shape.rotation)) - ])) + dump_data.update( + OrderedDict([("rotation", "{:.2f}".format(shape.rotation))]) + ) elif shape.type == "mask": - dump_data.update(OrderedDict([ - ("rle", f"{list(int (v) for v in shape.points[:-4])}"[1:-1]), - ("left", f"{int(shape.points[-4])}"), - ("top", f"{int(shape.points[-3])}"), - ("width", f"{int(shape.points[-2] - shape.points[-4]) + 1}"), - ("height", f"{int(shape.points[-1] - shape.points[-3]) + 1}"), - ])) + dump_data.update( + OrderedDict( + [ + ("rle", f"{list(int (v) for v in shape.points[:-4])}"[1:-1]), + ("left", f"{int(shape.points[-4])}"), + ("top", f"{int(shape.points[-3])}"), + ("width", f"{int(shape.points[-2] - shape.points[-4]) + 1}"), + ("height", f"{int(shape.points[-1] - shape.points[-3]) + 1}"), + ] + ) + ) elif shape.type == "cuboid": - dump_data.update(OrderedDict([ - ("xtl1", "{:.2f}".format(shape.points[0])), - ("ytl1", "{:.2f}".format(shape.points[1])), - ("xbl1", "{:.2f}".format(shape.points[2])), - ("ybl1", "{:.2f}".format(shape.points[3])), - ("xtr1", "{:.2f}".format(shape.points[4])), - ("ytr1", "{:.2f}".format(shape.points[5])), - ("xbr1", "{:.2f}".format(shape.points[6])), - ("ybr1", "{:.2f}".format(shape.points[7])), - ("xtl2", "{:.2f}".format(shape.points[8])), - ("ytl2", "{:.2f}".format(shape.points[9])), - ("xbl2", "{:.2f}".format(shape.points[10])), - ("ybl2", "{:.2f}".format(shape.points[11])), - ("xtr2", "{:.2f}".format(shape.points[12])), - ("ytr2", "{:.2f}".format(shape.points[13])), - ("xbr2", "{:.2f}".format(shape.points[14])), - ("ybr2", "{:.2f}".format(shape.points[15])) - ])) + dump_data.update( + OrderedDict( + [ + ("xtl1", "{:.2f}".format(shape.points[0])), + ("ytl1", "{:.2f}".format(shape.points[1])), + ("xbl1", "{:.2f}".format(shape.points[2])), + ("ybl1", "{:.2f}".format(shape.points[3])), + ("xtr1", "{:.2f}".format(shape.points[4])), + ("ytr1", "{:.2f}".format(shape.points[5])), + ("xbr1", "{:.2f}".format(shape.points[6])), + ("ybr1", "{:.2f}".format(shape.points[7])), + ("xtl2", "{:.2f}".format(shape.points[8])), + ("ytl2", "{:.2f}".format(shape.points[9])), + ("xbl2", "{:.2f}".format(shape.points[10])), + ("ybl2", "{:.2f}".format(shape.points[11])), + ("xtr2", "{:.2f}".format(shape.points[12])), + ("ytr2", "{:.2f}".format(shape.points[13])), + ("xbr2", "{:.2f}".format(shape.points[14])), + ("ybr2", "{:.2f}".format(shape.points[15])), + ] + ) + ) elif shape.type != "skeleton": - dump_data.update(OrderedDict([ - ("points", ';'.join(['{:.2f},{:.2f}'.format(x, y) - for x,y in pairwise(shape.points)])) - ])) + dump_data.update( + OrderedDict( + [ + ( + "points", + ";".join( + [ + "{:.2f},{:.2f}".format(x, y) + for x, y in pairwise(shape.points) + ] + ), + ) + ] + ) + ) if label is None: dump_data["z_order"] = str(shape.z_order) @@ -976,11 +1211,11 @@ def dump_shape(shape, element_shapes=None, label=None): dumper.open_polyline(dump_data) elif shape.type == "points": dumper.open_points(dump_data) - elif shape.type == 'mask': + elif shape.type == "mask": dumper.open_mask(dump_data) elif shape.type == "cuboid": dumper.open_cuboid(dump_data) - elif shape.type == 'skeleton': + elif shape.type == "skeleton": if element_shapes and element_shapes.get(shape.frame): dumper.open_skeleton(dump_data) for element_shape, label in element_shapes.get(shape.frame, []): @@ -988,13 +1223,16 @@ def dump_shape(shape, element_shapes=None, label=None): else: raise NotImplementedError("unknown shape type") - if shape.type == "skeleton" and element_shapes \ - and element_shapes.get(shape.frame) or shape.type != "skeleton": + if ( + shape.type == "skeleton" + and element_shapes + and element_shapes.get(shape.frame) + or shape.type != "skeleton" + ): for attr in shape.attributes: - dumper.add_attribute(OrderedDict([ - ("name", attr.name), - ("value", attr.value) - ])) + dumper.add_attribute( + OrderedDict([("name", attr.name), ("value", attr.value)]) + ) if shape.type == "rectangle": dumper.close_box() @@ -1006,7 +1244,7 @@ def dump_shape(shape, element_shapes=None, label=None): dumper.close_polyline() elif shape.type == "points": dumper.close_points() - elif shape.type == 'mask': + elif shape.type == "mask": dumper.close_mask() elif shape.type == "cuboid": dumper.close_cuboid() @@ -1018,21 +1256,30 @@ def dump_shape(shape, element_shapes=None, label=None): def dump_track(idx, track): track_id = idx - dump_data = OrderedDict([ - ("id", str(track_id)), - ("label", track.label), - ("source", track.source), - ]) - - if hasattr(track, 'task_id'): - task, = filter(lambda task: task.id == track.task_id, annotations.tasks) - dump_data.update(OrderedDict([ - ('task_id', str(track.task_id)), - ('subset', get_defaulted_subset(task.subset, annotations.subsets)), - ])) + dump_data = OrderedDict( + [ + ("id", str(track_id)), + ("label", track.label), + ("source", track.source), + ] + ) + + if hasattr(track, "task_id"): + (task,) = filter(lambda task: task.id == track.task_id, annotations.tasks) + dump_data.update( + OrderedDict( + [ + ("task_id", str(track.task_id)), + ( + "subset", + get_defaulted_subset(task.subset, annotations.subsets), + ), + ] + ) + ) if track.group: - dump_data['group_id'] = str(track.group) + dump_data["group_id"] = str(track.group) dumper.open_track(dump_data) element_shapes = {} @@ -1040,7 +1287,9 @@ def dump_track(idx, track): for element_shape in element_track.shapes: if element_shape.frame not in element_shapes: element_shapes[element_shape.frame] = [] - element_shapes[element_shape.frame].append((element_shape, element_track.label)) + element_shapes[element_shape.frame].append( + (element_shape, element_track.label) + ) for shape in track.shapes: dump_shape(shape, element_shapes) @@ -1053,297 +1302,366 @@ def dump_track(idx, track): counter += 1 for shape in annotations.shapes: - frame_step = annotations.frame_step if not isinstance(annotations, ProjectData) \ + frame_step = ( + annotations.frame_step + if not isinstance(annotations, ProjectData) else annotations.frame_step[shape.task_id] + ) if not isinstance(annotations, ProjectData): - stop_frame = int(annotations.meta[annotations.META_FIELD]['stop_frame']) + stop_frame = int(annotations.meta[annotations.META_FIELD]["stop_frame"]) else: - task_meta = list(filter(lambda task: int(task[1]['id']) == shape.task_id, - annotations.meta[annotations.META_FIELD]['tasks']))[0][1] - stop_frame = int(task_meta['stop_frame']) + task_meta = list( + filter( + lambda task: int(task[1]["id"]) == shape.task_id, + annotations.meta[annotations.META_FIELD]["tasks"], + ) + )[0][1] + stop_frame = int(task_meta["stop_frame"]) track = { - 'label': shape.label, - 'group': shape.group, - 'source': shape.source, - 'shapes': [annotations.TrackedShape( - type=shape.type, - points=shape.points, - rotation=shape.rotation, - occluded=shape.occluded, - outside=False, - keyframe=True, - z_order=shape.z_order, - frame=shape.frame, - attributes=shape.attributes, - )] + - ( # add a finishing frame if it does not hop over the last frame - [annotations.TrackedShape( - type=shape.type, - points=shape.points, - rotation=shape.rotation, - occluded=shape.occluded, - outside=True, - keyframe=True, - z_order=shape.z_order, - frame=shape.frame + frame_step, - attributes=shape.attributes, - )] if shape.frame + frame_step < \ - stop_frame \ - else [] - ), - 'elements': [annotations.Track( - label=element.label, - group=element.group, - source=element.source, - shapes=[annotations.TrackedShape( - type=element.type, - points=element.points, - rotation=element.rotation, - occluded=element.occluded, - outside=element.outside, - keyframe=True, - z_order=element.z_order, - frame=element.frame, - attributes=element.attributes, - )] + - ( # add a finishing frame if it does not hop over the last frame - [annotations.TrackedShape( - type=element.type, - points=element.points, - rotation=element.rotation, - occluded=element.occluded, - outside=True, + "label": shape.label, + "group": shape.group, + "source": shape.source, + "shapes": [ + annotations.TrackedShape( + type=shape.type, + points=shape.points, + rotation=shape.rotation, + occluded=shape.occluded, + outside=False, keyframe=True, - z_order=element.z_order, - frame=element.frame + frame_step, - attributes=element.attributes, - )] if element.frame + frame_step < \ - stop_frame \ + z_order=shape.z_order, + frame=shape.frame, + attributes=shape.attributes, + ) + ] + + ( # add a finishing frame if it does not hop over the last frame + [ + annotations.TrackedShape( + type=shape.type, + points=shape.points, + rotation=shape.rotation, + occluded=shape.occluded, + outside=True, + keyframe=True, + z_order=shape.z_order, + frame=shape.frame + frame_step, + attributes=shape.attributes, + ) + ] + if shape.frame + frame_step < stop_frame else [] - ), - elements=[], - ) for element in shape.elements] + ), + "elements": [ + annotations.Track( + label=element.label, + group=element.group, + source=element.source, + shapes=[ + annotations.TrackedShape( + type=element.type, + points=element.points, + rotation=element.rotation, + occluded=element.occluded, + outside=element.outside, + keyframe=True, + z_order=element.z_order, + frame=element.frame, + attributes=element.attributes, + ) + ] + + ( # add a finishing frame if it does not hop over the last frame + [ + annotations.TrackedShape( + type=element.type, + points=element.points, + rotation=element.rotation, + occluded=element.occluded, + outside=True, + keyframe=True, + z_order=element.z_order, + frame=element.frame + frame_step, + attributes=element.attributes, + ) + ] + if element.frame + frame_step < stop_frame + else [] + ), + elements=[], + ) + for element in shape.elements + ], } if isinstance(annotations, ProjectData): - track['task_id'] = shape.task_id - for element in track['elements']: + track["task_id"] = shape.task_id + for element in track["elements"]: element.task_id = shape.task_id dump_track(counter, annotations.Track(**track)) counter += 1 dumper.close_root() + def load_anno(file_object, annotations): - supported_shapes = ('box', 'ellipse', 'polygon', 'polyline', 'points', 'cuboid', 'skeleton', 'mask') + supported_shapes = ( + "box", + "ellipse", + "polygon", + "polyline", + "points", + "cuboid", + "skeleton", + "mask", + ) context = ElementTree.iterparse(file_object, events=("start", "end")) context = iter(context) next(context) track = None shape = None - shape_element=None + shape_element = None tag = None image_is_opened = False attributes = None elem_attributes = None track_elements = None for ev, el in context: - if ev == 'start': - if el.tag == 'track': + if ev == "start": + if el.tag == "track": track = annotations.Track( - label=el.attrib['label'], - group=int(el.attrib.get('group_id', 0)), - source='file', + label=el.attrib["label"], + group=int(el.attrib.get("group_id", 0)), + source="file", shapes=[], elements=[], ) - elif el.tag == 'image': + elif el.tag == "image": image_is_opened = True - frame_id = annotations.abs_frame_id(match_dm_item( - DatasetItem(id=osp.splitext(el.attrib['name'])[0], - attributes={'frame': el.attrib['id']}, - image=el.attrib['name'] - ), - instance_data=annotations - )) + frame_id = annotations.abs_frame_id( + match_dm_item( + DatasetItem( + id=osp.splitext(el.attrib["name"])[0], + attributes={"frame": el.attrib["id"]}, + image=el.attrib["name"], + ), + instance_data=annotations, + ) + ) elif el.tag in supported_shapes and (track is not None or image_is_opened): - if shape and shape['type'] == 'skeleton': + if shape and shape["type"] == "skeleton": elem_attributes = [] shape_element = { - 'attributes': elem_attributes, - 'points': [], - 'type': 'rectangle' if el.tag == 'box' else el.tag + "attributes": elem_attributes, + "points": [], + "type": "rectangle" if el.tag == "box" else el.tag, } - if track is not None and el.attrib['label'] not in track_elements: - track_elements[el.attrib['label']] = annotations.Track( - label=el.attrib['label'], + if track is not None and el.attrib["label"] not in track_elements: + track_elements[el.attrib["label"]] = annotations.Track( + label=el.attrib["label"], group=0, - source='file', + source="file", shapes=[], elements=[], ) else: attributes = [] shape = { - 'attributes': attributes, - 'points': [], - 'type': 'rectangle' if el.tag == 'box' else el.tag + "attributes": attributes, + "points": [], + "type": "rectangle" if el.tag == "box" else el.tag, } if track is None: - shape['elements'] = [] - elif shape['type'] == 'skeleton': - shape['frame'] = el.attrib['frame'] + shape["elements"] = [] + elif shape["type"] == "skeleton": + shape["frame"] = el.attrib["frame"] if track_elements is None: track_elements = {} - elif el.tag == 'tag' and image_is_opened: + elif el.tag == "tag" and image_is_opened: attributes = [] tag = { - 'frame': frame_id, - 'label': el.attrib['label'], - 'group': int(el.attrib.get('group_id', 0)), - 'attributes': attributes, - 'source': 'file', + "frame": frame_id, + "label": el.attrib["label"], + "group": int(el.attrib.get("group_id", 0)), + "attributes": attributes, + "source": "file", } - elif ev == 'end': - if el.tag == 'attribute' and elem_attributes is not None and shape_element is not None: - elem_attributes.append(annotations.Attribute( - name=el.attrib['name'], - value=el.text or "", - )) - if el.tag == 'attribute' and attributes is not None and shape_element is None: - attributes.append(annotations.Attribute( - name=el.attrib['name'], - value=el.text or "", - )) - if el.tag in supported_shapes and shape['type'] == 'skeleton' and el.tag != 'skeleton': - shape_element['label'] = el.attrib['label'] - - shape_element['occluded'] = el.attrib['occluded'] == '1' - shape_element['outside'] = el.attrib['outside'] == '1' - shape_element['elements'] = [] - - if el.tag == 'box': - shape_element['points'].append(el.attrib['xtl']) - shape_element['points'].append(el.attrib['ytl']) - shape_element['points'].append(el.attrib['xbr']) - shape_element['points'].append(el.attrib['ybr']) - elif el.tag == 'ellipse': - shape_element['points'].append(el.attrib['cx']) - shape_element['points'].append(el.attrib['cy']) - shape_element['points'].append("{:.2f}".format(float(el.attrib['cx']) + float(el.attrib['rx']))) - shape_element['points'].append("{:.2f}".format(float(el.attrib['cy']) - float(el.attrib['ry']))) - elif el.tag == 'cuboid': - shape_element['points'].append(el.attrib['xtl1']) - shape_element['points'].append(el.attrib['ytl1']) - shape_element['points'].append(el.attrib['xbl1']) - shape_element['points'].append(el.attrib['ybl1']) - shape_element['points'].append(el.attrib['xtr1']) - shape_element['points'].append(el.attrib['ytr1']) - shape_element['points'].append(el.attrib['xbr1']) - shape_element['points'].append(el.attrib['ybr1']) - - shape_element['points'].append(el.attrib['xtl2']) - shape_element['points'].append(el.attrib['ytl2']) - shape_element['points'].append(el.attrib['xbl2']) - shape_element['points'].append(el.attrib['ybl2']) - shape_element['points'].append(el.attrib['xtr2']) - shape_element['points'].append(el.attrib['ytr2']) - shape_element['points'].append(el.attrib['xbr2']) - shape_element['points'].append(el.attrib['ybr2']) + elif ev == "end": + if ( + el.tag == "attribute" + and elem_attributes is not None + and shape_element is not None + ): + elem_attributes.append( + annotations.Attribute( + name=el.attrib["name"], + value=el.text or "", + ) + ) + if ( + el.tag == "attribute" + and attributes is not None + and shape_element is None + ): + attributes.append( + annotations.Attribute( + name=el.attrib["name"], + value=el.text or "", + ) + ) + if ( + el.tag in supported_shapes + and shape["type"] == "skeleton" + and el.tag != "skeleton" + ): + shape_element["label"] = el.attrib["label"] + + shape_element["occluded"] = el.attrib["occluded"] == "1" + shape_element["outside"] = el.attrib["outside"] == "1" + shape_element["elements"] = [] + + if el.tag == "box": + shape_element["points"].append(el.attrib["xtl"]) + shape_element["points"].append(el.attrib["ytl"]) + shape_element["points"].append(el.attrib["xbr"]) + shape_element["points"].append(el.attrib["ybr"]) + elif el.tag == "ellipse": + shape_element["points"].append(el.attrib["cx"]) + shape_element["points"].append(el.attrib["cy"]) + shape_element["points"].append( + "{:.2f}".format(float(el.attrib["cx"]) + float(el.attrib["rx"])) + ) + shape_element["points"].append( + "{:.2f}".format(float(el.attrib["cy"]) - float(el.attrib["ry"])) + ) + elif el.tag == "cuboid": + shape_element["points"].append(el.attrib["xtl1"]) + shape_element["points"].append(el.attrib["ytl1"]) + shape_element["points"].append(el.attrib["xbl1"]) + shape_element["points"].append(el.attrib["ybl1"]) + shape_element["points"].append(el.attrib["xtr1"]) + shape_element["points"].append(el.attrib["ytr1"]) + shape_element["points"].append(el.attrib["xbr1"]) + shape_element["points"].append(el.attrib["ybr1"]) + + shape_element["points"].append(el.attrib["xtl2"]) + shape_element["points"].append(el.attrib["ytl2"]) + shape_element["points"].append(el.attrib["xbl2"]) + shape_element["points"].append(el.attrib["ybl2"]) + shape_element["points"].append(el.attrib["xtr2"]) + shape_element["points"].append(el.attrib["ytr2"]) + shape_element["points"].append(el.attrib["xbr2"]) + shape_element["points"].append(el.attrib["ybr2"]) else: - for pair in el.attrib['points'].split(';'): - shape_element['points'].extend(map(float, pair.split(','))) + for pair in el.attrib["points"].split(";"): + shape_element["points"].extend(map(float, pair.split(","))) if track is None: - shape_element['frame'] = frame_id - shape_element['source'] = 'file' - shape['elements'].append(annotations.LabeledShape(**shape_element)) + shape_element["frame"] = frame_id + shape_element["source"] = "file" + shape["elements"].append(annotations.LabeledShape(**shape_element)) else: - shape_element["frame"] = shape['frame'] - shape_element['keyframe'] = el.attrib['keyframe'] == "1" - if shape_element['keyframe']: - track_elements[el.attrib['label']].shapes.append(annotations.TrackedShape(**shape_element)) + shape_element["frame"] = shape["frame"] + shape_element["keyframe"] = el.attrib["keyframe"] == "1" + if shape_element["keyframe"]: + track_elements[el.attrib["label"]].shapes.append( + annotations.TrackedShape(**shape_element) + ) shape_element = None elif el.tag in supported_shapes: if track is not None: - shape['frame'] = el.attrib['frame'] - shape['outside'] = el.attrib.get('outside', "0") == "1" - shape['keyframe'] = el.attrib['keyframe'] == "1" + shape["frame"] = el.attrib["frame"] + shape["outside"] = el.attrib.get("outside", "0") == "1" + shape["keyframe"] = el.attrib["keyframe"] == "1" else: - shape['frame'] = frame_id - shape['label'] = el.attrib['label'] - shape['group'] = int(el.attrib.get('group_id', 0)) - shape['source'] = 'file' - shape['outside'] = False - - shape['occluded'] = el.attrib.get('occluded', "0") == '1' - shape['z_order'] = int(el.attrib.get('z_order', 0)) - shape['rotation'] = float(el.attrib.get('rotation', 0)) - - if el.tag == 'box': - shape['points'].append(el.attrib['xtl']) - shape['points'].append(el.attrib['ytl']) - shape['points'].append(el.attrib['xbr']) - shape['points'].append(el.attrib['ybr']) - elif el.tag == 'ellipse': - shape['points'].append(el.attrib['cx']) - shape['points'].append(el.attrib['cy']) - shape['points'].append("{:.2f}".format(float(el.attrib['cx']) + float(el.attrib['rx']))) - shape['points'].append("{:.2f}".format(float(el.attrib['cy']) - float(el.attrib['ry']))) - elif el.tag == 'mask': - shape['points'] = el.attrib['rle'].split(',') - shape['points'].append(el.attrib['left']) - shape['points'].append(el.attrib['top']) - shape['points'].append("{}".format(int(el.attrib['left']) + int(el.attrib['width']) - 1)) - shape['points'].append("{}".format(int(el.attrib['top']) + int(el.attrib['height']) - 1)) - elif el.tag == 'cuboid': - shape['points'].append(el.attrib['xtl1']) - shape['points'].append(el.attrib['ytl1']) - shape['points'].append(el.attrib['xbl1']) - shape['points'].append(el.attrib['ybl1']) - shape['points'].append(el.attrib['xtr1']) - shape['points'].append(el.attrib['ytr1']) - shape['points'].append(el.attrib['xbr1']) - shape['points'].append(el.attrib['ybr1']) - - shape['points'].append(el.attrib['xtl2']) - shape['points'].append(el.attrib['ytl2']) - shape['points'].append(el.attrib['xbl2']) - shape['points'].append(el.attrib['ybl2']) - shape['points'].append(el.attrib['xtr2']) - shape['points'].append(el.attrib['ytr2']) - shape['points'].append(el.attrib['xbr2']) - shape['points'].append(el.attrib['ybr2']) - elif el.tag == 'skeleton': + shape["frame"] = frame_id + shape["label"] = el.attrib["label"] + shape["group"] = int(el.attrib.get("group_id", 0)) + shape["source"] = "file" + shape["outside"] = False + + shape["occluded"] = el.attrib.get("occluded", "0") == "1" + shape["z_order"] = int(el.attrib.get("z_order", 0)) + shape["rotation"] = float(el.attrib.get("rotation", 0)) + + if el.tag == "box": + shape["points"].append(el.attrib["xtl"]) + shape["points"].append(el.attrib["ytl"]) + shape["points"].append(el.attrib["xbr"]) + shape["points"].append(el.attrib["ybr"]) + elif el.tag == "ellipse": + shape["points"].append(el.attrib["cx"]) + shape["points"].append(el.attrib["cy"]) + shape["points"].append( + "{:.2f}".format(float(el.attrib["cx"]) + float(el.attrib["rx"])) + ) + shape["points"].append( + "{:.2f}".format(float(el.attrib["cy"]) - float(el.attrib["ry"])) + ) + elif el.tag == "mask": + shape["points"] = el.attrib["rle"].split(",") + shape["points"].append(el.attrib["left"]) + shape["points"].append(el.attrib["top"]) + shape["points"].append( + "{}".format( + int(el.attrib["left"]) + int(el.attrib["width"]) - 1 + ) + ) + shape["points"].append( + "{}".format( + int(el.attrib["top"]) + int(el.attrib["height"]) - 1 + ) + ) + elif el.tag == "cuboid": + shape["points"].append(el.attrib["xtl1"]) + shape["points"].append(el.attrib["ytl1"]) + shape["points"].append(el.attrib["xbl1"]) + shape["points"].append(el.attrib["ybl1"]) + shape["points"].append(el.attrib["xtr1"]) + shape["points"].append(el.attrib["ytr1"]) + shape["points"].append(el.attrib["xbr1"]) + shape["points"].append(el.attrib["ybr1"]) + + shape["points"].append(el.attrib["xtl2"]) + shape["points"].append(el.attrib["ytl2"]) + shape["points"].append(el.attrib["xbl2"]) + shape["points"].append(el.attrib["ybl2"]) + shape["points"].append(el.attrib["xtr2"]) + shape["points"].append(el.attrib["ytr2"]) + shape["points"].append(el.attrib["xbr2"]) + shape["points"].append(el.attrib["ybr2"]) + elif el.tag == "skeleton": pass else: - for pair in el.attrib['points'].split(';'): - shape['points'].extend(map(float, pair.split(','))) + for pair in el.attrib["points"].split(";"): + shape["points"].extend(map(float, pair.split(","))) if track is not None: - if shape['keyframe']: + if shape["keyframe"]: track.shapes.append(annotations.TrackedShape(**shape)) else: annotations.add_shape(annotations.LabeledShape(**shape)) shape = None - elif el.tag == 'track': - if track.shapes[0].type == 'mask': + elif el.tag == "track": + if track.shapes[0].type == "mask": # convert mask tracks to shapes # because mask track are not supported - annotations.add_shape(annotations.LabeledShape(**{ - 'attributes': track.shapes[0].attributes, - 'points': track.shapes[0].points, - 'type': track.shapes[0].type, - 'occluded': track.shapes[0].occluded, - 'frame': track.shapes[0].frame, - 'source': track.shapes[0].source, - 'rotation': track.shapes[0].rotation, - 'z_order': track.shapes[0].z_order, - 'group': track.shapes[0].group, - 'label': track.label, - })) + annotations.add_shape( + annotations.LabeledShape( + **{ + "attributes": track.shapes[0].attributes, + "points": track.shapes[0].points, + "type": track.shapes[0].type, + "occluded": track.shapes[0].occluded, + "frame": track.shapes[0].frame, + "source": track.shapes[0].source, + "rotation": track.shapes[0].rotation, + "z_order": track.shapes[0].z_order, + "group": track.shapes[0].group, + "label": track.label, + } + ) + ) else: if track_elements is not None: for element in track_elements.values(): @@ -1351,89 +1669,138 @@ def load_anno(file_object, annotations): track_elements = None annotations.add_track(track) track = None - elif el.tag == 'image': + elif el.tag == "image": image_is_opened = False - elif el.tag == 'tag': + elif el.tag == "tag": annotations.add_tag(annotations.Tag(**tag)) tag = None el.clear() + def dump_task_or_job_anno(dst_file, instance_data, callback): dumper = create_xml_dumper(dst_file) dumper.open_document() callback(dumper, instance_data) dumper.close_document() -def dump_project_anno(dst_file: BufferedWriter, project_data: ProjectData, callback: Callable): + +def dump_project_anno( + dst_file: BufferedWriter, project_data: ProjectData, callback: Callable +): dumper = create_xml_dumper(dst_file) dumper.open_document() callback(dumper, project_data) dumper.close_document() -def dump_media_files(instance_data: CommonData, img_dir: str, project_data: ProjectData = None): - ext = '' - if instance_data.meta[instance_data.META_FIELD]['mode'] == 'interpolation': + +def dump_media_files( + instance_data: CommonData, img_dir: str, project_data: ProjectData = None +): + ext = "" + if instance_data.meta[instance_data.META_FIELD]["mode"] == "interpolation": ext = FrameProvider.VIDEO_FRAME_EXT frame_provider = FrameProvider(instance_data.db_data) frames = frame_provider.get_frames( - instance_data.start, instance_data.stop, + instance_data.start, + instance_data.stop, frame_provider.Quality.ORIGINAL, - frame_provider.Type.BUFFER) + frame_provider.Type.BUFFER, + ) for frame_id, (frame_data, _) in zip(instance_data.rel_range, frames): - if (project_data is not None and (instance_data.db_instance.id, frame_id) in project_data.deleted_frames) \ - or frame_id in instance_data.deleted_frames: + if ( + project_data is not None + and (instance_data.db_instance.id, frame_id) in project_data.deleted_frames + ) or frame_id in instance_data.deleted_frames: continue - frame_name = instance_data.frame_info[frame_id]['path'] if project_data is None \ - else project_data.frame_info[(instance_data.db_instance.id, frame_id)]['path'] + frame_name = ( + instance_data.frame_info[frame_id]["path"] + if project_data is None + else project_data.frame_info[(instance_data.db_instance.id, frame_id)][ + "path" + ] + ) img_path = osp.join(img_dir, frame_name + ext) os.makedirs(osp.dirname(img_path), exist_ok=True) - with open(img_path, 'wb') as f: + with open(img_path, "wb") as f: f.write(frame_data.getvalue()) -def _export_task_or_job(dst_file, temp_dir, instance_data, anno_callback, save_images=False): - with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f: + +def _export_task_or_job( + dst_file, temp_dir, instance_data, anno_callback, save_images=False +): + with open(osp.join(temp_dir, "annotations.xml"), "wb") as f: dump_task_or_job_anno(f, instance_data, anno_callback) if save_images: - dump_media_files(instance_data, osp.join(temp_dir, 'images')) + dump_media_files(instance_data, osp.join(temp_dir, "images")) make_zip_archive(temp_dir, dst_file) -def _export_project(dst_file: str, temp_dir: str, project_data: ProjectData, - anno_callback: Callable, save_images: bool=False + +def _export_project( + dst_file: str, + temp_dir: str, + project_data: ProjectData, + anno_callback: Callable, + save_images: bool = False, ): - with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f: + with open(osp.join(temp_dir, "annotations.xml"), "wb") as f: dump_project_anno(f, project_data, anno_callback) if save_images: for task_data in project_data.task_data: - subset = get_defaulted_subset(task_data.db_instance.subset, project_data.subsets) - subset_dir = osp.join(temp_dir, 'images', subset) + subset = get_defaulted_subset( + task_data.db_instance.subset, project_data.subsets + ) + subset_dir = osp.join(temp_dir, "images", subset) os.makedirs(subset_dir, exist_ok=True) dump_media_files(task_data, subset_dir, project_data) make_zip_archive(temp_dir, dst_file) -@exporter(name='CVAT for video', ext='ZIP', version='1.1') + +@exporter(name="CVAT for video", ext="ZIP", version="1.1") def _export_video(dst_file, temp_dir, instance_data, save_images=False): if isinstance(instance_data, ProjectData): - _export_project(dst_file, temp_dir, instance_data, - anno_callback=dump_as_cvat_interpolation, save_images=save_images) + _export_project( + dst_file, + temp_dir, + instance_data, + anno_callback=dump_as_cvat_interpolation, + save_images=save_images, + ) else: - _export_task_or_job(dst_file, temp_dir, instance_data, - anno_callback=dump_as_cvat_interpolation, save_images=save_images) + _export_task_or_job( + dst_file, + temp_dir, + instance_data, + anno_callback=dump_as_cvat_interpolation, + save_images=save_images, + ) -@exporter(name='CVAT for images', ext='ZIP', version='1.1') + +@exporter(name="CVAT for images", ext="ZIP", version="1.1") def _export_images(dst_file, temp_dir, instance_data, save_images=False): if isinstance(instance_data, ProjectData): - _export_project(dst_file, temp_dir, instance_data, - anno_callback=dump_as_cvat_annotation, save_images=save_images) + _export_project( + dst_file, + temp_dir, + instance_data, + anno_callback=dump_as_cvat_annotation, + save_images=save_images, + ) else: - _export_task_or_job(dst_file, temp_dir, instance_data, - anno_callback=dump_as_cvat_annotation, save_images=save_images) + _export_task_or_job( + dst_file, + temp_dir, + instance_data, + anno_callback=dump_as_cvat_annotation, + save_images=save_images, + ) + -@importer(name='CVAT', ext='XML, ZIP', version='1.1') +@importer(name="CVAT", ext="XML, ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): is_zip = zipfile.is_zipfile(src_file) src_file.seek(0) @@ -1441,13 +1808,13 @@ def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs zipfile.ZipFile(src_file).extractall(temp_dir) if isinstance(instance_data, ProjectData): - detect_dataset(temp_dir, format_name='cvat', importer=_CvatImporter) - dataset = Dataset.import_from(temp_dir, 'cvat', env=dm_env) + detect_dataset(temp_dir, format_name="cvat", importer=_CvatImporter) + dataset = Dataset.import_from(temp_dir, "cvat", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) else: - anno_paths = glob(osp.join(temp_dir, '**', '*.xml'), recursive=True) + anno_paths = glob(osp.join(temp_dir, "**", "*.xml"), recursive=True) for p in anno_paths: load_anno(p, instance_data) else: diff --git a/cvat/apps/dataset_manager/formats/datumaro.py b/cvat/apps/dataset_manager/formats/datumaro.py index 090397b7a471..b3cede391d36 100644 --- a/cvat/apps/dataset_manager/formats/datumaro.py +++ b/cvat/apps/dataset_manager/formats/datumaro.py @@ -9,62 +9,76 @@ from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from cvat.apps.engine.models import DimensionType from .registry import dm_env, exporter, importer + class DeleteImagePath(ItemTransform): def transform_item(self, item): image = None if item.has_image and item.image.has_data: image = Image(data=item.image.data, size=item.image.size) - return item.wrap(image=image, point_cloud='', related_images=[]) + return item.wrap(image=image, point_cloud="", related_images=[]) @exporter(name="Datumaro", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): - with GetCVATDataExtractor(instance_data=instance_data, include_images=save_images) as extractor: + with GetCVATDataExtractor( + instance_data=instance_data, include_images=save_images + ) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) if not save_images: dataset.transform(DeleteImagePath) - dataset.export(temp_dir, 'datumaro', save_images=save_images) + dataset.export(temp_dir, "datumaro", save_images=save_images) make_zip_archive(temp_dir, dst_file) + @importer(name="Datumaro", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='datumaro', importer=dm_env.importers.get('datumaro')) - dataset = Dataset.import_from(temp_dir, 'datumaro', env=dm_env) + detect_dataset( + temp_dir, format_name="datumaro", importer=dm_env.importers.get("datumaro") + ) + dataset = Dataset.import_from(temp_dir, "datumaro", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) + @exporter(name="Datumaro 3D", ext="ZIP", version="1.0", dimension=DimensionType.DIM_3D) def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor( - instance_data=instance_data, include_images=save_images, + instance_data=instance_data, + include_images=save_images, dimension=DimensionType.DIM_3D, ) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) if not save_images: dataset.transform(DeleteImagePath) - dataset.export(temp_dir, 'datumaro', save_images=save_images) + dataset.export(temp_dir, "datumaro", save_images=save_images) make_zip_archive(temp_dir, dst_file) + @importer(name="Datumaro 3D", ext="ZIP", version="1.0", dimension=DimensionType.DIM_3D) def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='datumaro', importer=dm_env.importers.get('datumaro')) - dataset = Dataset.import_from(temp_dir, 'datumaro', env=dm_env) + detect_dataset( + temp_dir, format_name="datumaro", importer=dm_env.importers.get("datumaro") + ) + dataset = Dataset.import_from(temp_dir, "datumaro", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/icdar.py b/cvat/apps/dataset_manager/formats/icdar.py index 5d031eef82b0..bf0968d4ae22 100644 --- a/cvat/apps/dataset_manager/formats/icdar.py +++ b/cvat/apps/dataset_manager/formats/icdar.py @@ -5,13 +5,19 @@ import zipfile -from datumaro.components.annotation import (AnnotationType, Caption, Label, - LabelCategories) +from datumaro.components.annotation import ( + AnnotationType, + Caption, + Label, + LabelCategories, +) from datumaro.components.dataset import Dataset from datumaro.components.extractor import ItemTransform -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -36,11 +42,15 @@ def categories(self): def transform_item(self, item): annotations = item.annotations for ann in annotations: - if ann.type in [AnnotationType.polygon, - AnnotationType.bbox, AnnotationType.mask]: + if ann.type in [ + AnnotationType.polygon, + AnnotationType.bbox, + AnnotationType.mask, + ]: ann.label = self._label return item.wrap(annotations=annotations) + class CaptionToLabel(ItemTransform): def __init__(self, extractor, label): super().__init__(extractor) @@ -58,90 +68,92 @@ def categories(self): def transform_item(self, item): annotations = item.annotations - captions = [ann for ann in annotations - if ann.type == AnnotationType.caption] + captions = [ann for ann in annotations if ann.type == AnnotationType.caption] for ann in captions: - annotations.append(Label(self._label, - attributes={'text': ann.caption})) + annotations.append(Label(self._label, attributes={"text": ann.caption})) annotations.remove(ann) return item.wrap(annotations=annotations) + class LabelToCaption(ItemTransform): def transform_item(self, item): annotations = item.annotations - anns = [p for p in annotations - if 'text' in p.attributes] + anns = [p for p in annotations if "text" in p.attributes] for ann in anns: - annotations.append(Caption(ann.attributes['text'])) + annotations.append(Caption(ann.attributes["text"])) annotations.remove(ann) return item.wrap(annotations=annotations) -@exporter(name='ICDAR Recognition', ext='ZIP', version='1.0') + +@exporter(name="ICDAR Recognition", ext="ZIP", version="1.0") def _export_recognition(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(LabelToCaption) - dataset.export(temp_dir, 'icdar_word_recognition', save_images=save_images) + dataset.export(temp_dir, "icdar_word_recognition", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='ICDAR Recognition', ext='ZIP', version='1.0') + +@importer(name="ICDAR Recognition", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) # We do not run detect_dataset before import because the ICDAR format # has problem with the dataset detection in case of empty annotation file(s) # Details in: https://github.com/cvat-ai/datumaro/issues/43 - dataset = Dataset.import_from(temp_dir, 'icdar_word_recognition', env=dm_env) - dataset.transform(CaptionToLabel, label='icdar') + dataset = Dataset.import_from(temp_dir, "icdar_word_recognition", env=dm_env) + dataset.transform(CaptionToLabel, label="icdar") if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) -@exporter(name='ICDAR Localization', ext='ZIP', version='1.0') +@exporter(name="ICDAR Localization", ext="ZIP", version="1.0") def _export_localization(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'icdar_text_localization', save_images=save_images) + dataset.export(temp_dir, "icdar_text_localization", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='ICDAR Localization', ext='ZIP', version='1.0') + +@importer(name="ICDAR Localization", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) # We do not run detect_dataset before import because the ICDAR format # has problem with the dataset detection in case of empty annotation file(s) # Details in: https://github.com/cvat-ai/datumaro/issues/43 - dataset = Dataset.import_from(temp_dir, 'icdar_text_localization', env=dm_env) - dataset.transform(AddLabelToAnns, label='icdar') + dataset = Dataset.import_from(temp_dir, "icdar_text_localization", env=dm_env) + dataset.transform(AddLabelToAnns, label="icdar") if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) -@exporter(name='ICDAR Segmentation', ext='ZIP', version='1.0') +@exporter(name="ICDAR Segmentation", ext="ZIP", version="1.0") def _export_segmentation(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('boxes_to_masks') - dataset.transform('merge_instance_segments') - dataset.export(temp_dir, 'icdar_text_segmentation', save_images=save_images) + dataset.transform("polygons_to_masks") + dataset.transform("boxes_to_masks") + dataset.transform("merge_instance_segments") + dataset.export(temp_dir, "icdar_text_segmentation", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='ICDAR Segmentation', ext='ZIP', version='1.0') + +@importer(name="ICDAR Segmentation", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) # We do not run detect_dataset before import because the ICDAR format # has problem with the dataset detection in case of empty annotation file(s) # Details in: https://github.com/cvat-ai/datumaro/issues/43 - dataset = Dataset.import_from(temp_dir, 'icdar_text_segmentation', env=dm_env) - dataset.transform(AddLabelToAnns, label='icdar') + dataset = Dataset.import_from(temp_dir, "icdar_text_segmentation", env=dm_env) + dataset.transform(AddLabelToAnns, label="icdar") dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/imagenet.py b/cvat/apps/dataset_manager/formats/imagenet.py index fd5e9a99a176..45da41715547 100644 --- a/cvat/apps/dataset_manager/formats/imagenet.py +++ b/cvat/apps/dataset_manager/formats/imagenet.py @@ -9,35 +9,38 @@ from datumaro.components.dataset import Dataset -from cvat.apps.dataset_manager.bindings import GetCVATDataExtractor, \ - import_dm_annotations +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='ImageNet', ext='ZIP', version='1.0') +@exporter(name="ImageNet", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) if save_images: - dataset.export(temp_dir, 'imagenet', save_images=save_images) + dataset.export(temp_dir, "imagenet", save_images=save_images) else: - dataset.export(temp_dir, 'imagenet_txt', save_images=save_images) + dataset.export(temp_dir, "imagenet_txt", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='ImageNet', ext='ZIP', version='1.0') + +@importer(name="ImageNet", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) # We do not run detect_dataset before import because the Imagenet format # has problem with the dataset detection in case of empty annotation file(s) # Details in: https://github.com/cvat-ai/datumaro/issues/43 - if glob(osp.join(temp_dir, '*.txt')): - dataset = Dataset.import_from(temp_dir, 'imagenet_txt', env=dm_env) + if glob(osp.join(temp_dir, "*.txt")): + dataset = Dataset.import_from(temp_dir, "imagenet_txt", env=dm_env) else: - dataset = Dataset.import_from(temp_dir, 'imagenet', env=dm_env) + dataset = Dataset.import_from(temp_dir, "imagenet", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/kitti.py b/cvat/apps/dataset_manager/formats/kitti.py index 01e1cd3fc4bc..1784cdbbf670 100644 --- a/cvat/apps/dataset_manager/formats/kitti.py +++ b/cvat/apps/dataset_manager/formats/kitti.py @@ -10,7 +10,11 @@ from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -18,22 +22,26 @@ from .utils import make_colormap -@exporter(name='KITTI', ext='ZIP', version='1.0') +@exporter(name="KITTI", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('merge_instance_segments') - dataset.export(temp_dir, format='kitti', + dataset.transform("polygons_to_masks") + dataset.transform("merge_instance_segments") + dataset.export( + temp_dir, + format="kitti", label_map={k: v[0] for k, v in make_colormap(instance_data).items()}, - apply_colormap=True, save_images=save_images + apply_colormap=True, + save_images=save_images, ) make_zip_archive(temp_dir, dst_file) -@importer(name='KITTI', ext='ZIP', version='1.0') + +@importer(name="KITTI", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) @@ -42,12 +50,15 @@ def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs if not osp.isfile(color_map_path): write_label_map(color_map_path, color_map) - detect_dataset(temp_dir, format_name='kitti', importer=dm_env.importers.get('kitti')) - dataset = Dataset.import_from(temp_dir, format='kitti', env=dm_env) - labels_meta = instance_data.meta[instance_data.META_FIELD]['labels'] - if 'background' not in [label['name'] for _, label in labels_meta]: - dataset.filter('/item/annotation[label != "background"]', - filter_annotations=True) + detect_dataset( + temp_dir, format_name="kitti", importer=dm_env.importers.get("kitti") + ) + dataset = Dataset.import_from(temp_dir, format="kitti", env=dm_env) + labels_meta = instance_data.meta[instance_data.META_FIELD]["labels"] + if "background" not in [label["name"] for _, label in labels_meta]: + dataset.filter( + '/item/annotation[label != "background"]', filter_annotations=True + ) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: diff --git a/cvat/apps/dataset_manager/formats/labelme.py b/cvat/apps/dataset_manager/formats/labelme.py index be9679f268e8..a797f0cd492f 100644 --- a/cvat/apps/dataset_manager/formats/labelme.py +++ b/cvat/apps/dataset_manager/formats/labelme.py @@ -6,28 +6,36 @@ from datumaro.components.dataset import Dataset from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) -from cvat.apps.dataset_manager.formats.transformations import MaskToPolygonTransformation +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) +from cvat.apps.dataset_manager.formats.transformations import ( + MaskToPolygonTransformation, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='LabelMe', ext='ZIP', version='3.0') +@exporter(name="LabelMe", ext="ZIP", version="3.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'label_me', save_images=save_images) + dataset.export(temp_dir, "label_me", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='LabelMe', ext='ZIP', version='3.0') + +@importer(name="LabelMe", ext="ZIP", version="3.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='label_me', importer=dm_env.importers.get('label_me')) - dataset = Dataset.import_from(temp_dir, 'label_me', env=dm_env) + detect_dataset( + temp_dir, format_name="label_me", importer=dm_env.importers.get("label_me") + ) + dataset = Dataset.import_from(temp_dir, "label_me", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/lfw.py b/cvat/apps/dataset_manager/formats/lfw.py index 0af356332bb5..b6aa35a4ef13 100644 --- a/cvat/apps/dataset_manager/formats/lfw.py +++ b/cvat/apps/dataset_manager/formats/lfw.py @@ -6,27 +6,31 @@ from datumaro.components.dataset import Dataset from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@importer(name='LFW', ext='ZIP', version='1.0') +@importer(name="LFW", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='lfw', importer=dm_env.importers.get('lfw')) - dataset = Dataset.import_from(temp_dir, 'lfw') + detect_dataset(temp_dir, format_name="lfw", importer=dm_env.importers.get("lfw")) + dataset = Dataset.import_from(temp_dir, "lfw") if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) -@exporter(name='LFW', ext='ZIP', version='1.0') + +@exporter(name="LFW", ext="ZIP", version="1.0") def _exporter(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, format='lfw', save_images=save_images) + dataset.export(temp_dir, format="lfw", save_images=save_images) make_zip_archive(temp_dir, dst_file) diff --git a/cvat/apps/dataset_manager/formats/librispeech.py b/cvat/apps/dataset_manager/formats/librispeech.py new file mode 100644 index 000000000000..76cb51c68ee4 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/librispeech.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="Librispeech", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/market1501.py b/cvat/apps/dataset_manager/formats/market1501.py index 6be8b2fcf75f..a7e255a92747 100644 --- a/cvat/apps/dataset_manager/formats/market1501.py +++ b/cvat/apps/dataset_manager/formats/market1501.py @@ -5,17 +5,20 @@ import zipfile -from datumaro.components.annotation import (AnnotationType, Label, - LabelCategories) +from datumaro.components.annotation import AnnotationType, Label, LabelCategories from datumaro.components.dataset import Dataset from datumaro.components.extractor import ItemTransform -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer + class AttrToLabelAttr(ItemTransform): def __init__(self, extractor, label): super().__init__(extractor) @@ -39,6 +42,7 @@ def transform_item(self, item): attributes = {} return item.wrap(annotations=annotations, attributes=attributes) + class LabelAttrToAttr(ItemTransform): def __init__(self, extractor, label): super().__init__(extractor) @@ -51,32 +55,37 @@ def transform_item(self, item): annotations = list(item.annotations) attributes = dict(item.attributes) if self._label is not None: - labels = [ann for ann in annotations - if ann.type == AnnotationType.label \ - and ann.label == self._label] + labels = [ + ann + for ann in annotations + if ann.type == AnnotationType.label and ann.label == self._label + ] if len(labels) == 1: attributes.update(labels[0].attributes) annotations.remove(labels[0]) return item.wrap(annotations=annotations, attributes=attributes) -@exporter(name='Market-1501', ext='ZIP', version='1.0') +@exporter(name="Market-1501", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.transform(LabelAttrToAttr, label='market-1501') - dataset.export(temp_dir, 'market1501', save_images=save_images) + dataset.transform(LabelAttrToAttr, label="market-1501") + dataset.export(temp_dir, "market1501", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='Market-1501', ext='ZIP', version='1.0') + +@importer(name="Market-1501", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) - detect_dataset(temp_dir, format_name='market1501', importer=dm_env.importers.get('market1501')) - dataset = Dataset.import_from(temp_dir, 'market1501', env=dm_env) - dataset.transform(AttrToLabelAttr, label='market-1501') + detect_dataset( + temp_dir, format_name="market1501", importer=dm_env.importers.get("market1501") + ) + dataset = Dataset.import_from(temp_dir, "market1501", env=dm_env) + dataset.transform(AttrToLabelAttr, label="market-1501") if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/mask.py b/cvat/apps/dataset_manager/formats/mask.py index f003f68383e7..400ed8399c06 100644 --- a/cvat/apps/dataset_manager/formats/mask.py +++ b/cvat/apps/dataset_manager/formats/mask.py @@ -6,34 +6,44 @@ from datumaro.components.dataset import Dataset from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons from .registry import dm_env, exporter, importer from .utils import make_colormap -@exporter(name='Segmentation mask', ext='ZIP', version='1.1') + +@exporter(name="Segmentation mask", ext="ZIP", version="1.1") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('boxes_to_masks') - dataset.transform('merge_instance_segments') - - dataset.export(temp_dir, 'voc_segmentation', save_images=save_images, - apply_colormap=True, label_map=make_colormap(instance_data)) + dataset.transform("polygons_to_masks") + dataset.transform("boxes_to_masks") + dataset.transform("merge_instance_segments") + + dataset.export( + temp_dir, + "voc_segmentation", + save_images=save_images, + apply_colormap=True, + label_map=make_colormap(instance_data), + ) make_zip_archive(temp_dir, dst_file) -@importer(name='Segmentation mask', ext='ZIP', version='1.1') + +@importer(name="Segmentation mask", ext="ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='voc', importer=dm_env.importers.get('voc')) - dataset = Dataset.import_from(temp_dir, 'voc', env=dm_env) + detect_dataset(temp_dir, format_name="voc", importer=dm_env.importers.get("voc")) + dataset = Dataset.import_from(temp_dir, "voc", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/mot.py b/cvat/apps/dataset_manager/formats/mot.py index 4030d865c742..f3ede7150299 100644 --- a/cvat/apps/dataset_manager/formats/mot.py +++ b/cvat/apps/dataset_manager/formats/mot.py @@ -26,29 +26,31 @@ def _import_to_task(dataset, instance_data): if ann.type != dm.AnnotationType.bbox: continue - occluded = ann.attributes.pop('occluded', False) is True - track_id = ann.attributes.pop('track_id', None) + occluded = ann.attributes.pop("occluded", False) is True + track_id = ann.attributes.pop("track_id", None) attributes = [ instance_data.Attribute(name=n, value=str(v)) for n, v in ann.attributes.items() ] if track_id is None: # Extension. Import regular boxes: - instance_data.add_shape(instance_data.LabeledShape( - type='rectangle', - label=label_cat.items[ann.label].name, - points=ann.points, - occluded=occluded, - z_order=ann.z_order, - group=0, - frame=frame_number, - attributes=attributes, - source='manual', - )) + instance_data.add_shape( + instance_data.LabeledShape( + type="rectangle", + label=label_cat.items[ann.label].name, + points=ann.points, + occluded=occluded, + z_order=ann.z_order, + group=0, + frame=frame_number, + attributes=attributes, + source="manual", + ) + ) continue shape = instance_data.TrackedShape( - type='rectangle', + type="rectangle", points=ann.points, occluded=occluded, outside=False, @@ -56,13 +58,14 @@ def _import_to_task(dataset, instance_data): z_order=ann.z_order, frame=frame_number, attributes=attributes, - source='manual', + source="manual", ) # build trajectories as lists of shapes in track dict if track_id not in tracks: tracks[track_id] = instance_data.Track( - label_cat.items[ann.label].name, 0, 'manual', []) + label_cat.items[ann.label].name, 0, "manual", [] + ) tracks[track_id].shapes.append(shape) for track in tracks.values(): @@ -75,8 +78,9 @@ def _import_to_task(dataset, instance_data): for shape in track.shapes[1:]: has_skip = instance_data.frame_step < shape.frame - prev_shape.frame if has_skip and not prev_shape.outside: - prev_shape = prev_shape._replace(outside=True, - frame=prev_shape.frame + instance_data.frame_step) + prev_shape = prev_shape._replace( + outside=True, frame=prev_shape.frame + instance_data.frame_step + ) prev_shape_idx += 1 track.shapes.insert(prev_shape_idx, prev_shape) prev_shape = shape @@ -84,34 +88,40 @@ def _import_to_task(dataset, instance_data): # Append a shape with outside=True to finish the track last_shape = track.shapes[-1] - if last_shape.frame + instance_data.frame_step <= \ - int(instance_data.meta[instance_data.META_FIELD]['stop_frame']): - track.shapes.append(last_shape._replace(outside=True, - frame=last_shape.frame + instance_data.frame_step) + if last_shape.frame + instance_data.frame_step <= int( + instance_data.meta[instance_data.META_FIELD]["stop_frame"] + ): + track.shapes.append( + last_shape._replace( + outside=True, frame=last_shape.frame + instance_data.frame_step + ) ) instance_data.add_track(track) -@exporter(name='MOT', ext='ZIP', version='1.1') +@exporter(name="MOT", ext="ZIP", version="1.1") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = dm.Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'mot_seq_gt', save_images=save_images) + dataset.export(temp_dir, "mot_seq_gt", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='MOT', ext='ZIP', version='1.1') + +@importer(name="MOT", ext="ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='mot_seq', importer=dm_env.importers.get('mot_seq')) - dataset = dm.Dataset.import_from(temp_dir, 'mot_seq', env=dm_env) + detect_dataset( + temp_dir, format_name="mot_seq", importer=dm_env.importers.get("mot_seq") + ) + dataset = dm.Dataset.import_from(temp_dir, "mot_seq", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) # Dirty way to determine instance type to avoid circular dependency - if hasattr(instance_data, '_db_project'): + if hasattr(instance_data, "_db_project"): for sub_dataset, task_data in instance_data.split_dataset(dataset): _import_to_task(sub_dataset, task_data) else: diff --git a/cvat/apps/dataset_manager/formats/mots.py b/cvat/apps/dataset_manager/formats/mots.py index 9ed156e6cd4e..0ed88842012b 100644 --- a/cvat/apps/dataset_manager/formats/mots.py +++ b/cvat/apps/dataset_manager/formats/mots.py @@ -8,8 +8,12 @@ from datumaro.components.extractor import ItemTransform from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - find_dataset_root, match_dm_item) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + find_dataset_root, + match_dm_item, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -18,8 +22,10 @@ class KeepTracks(ItemTransform): def transform_item(self, item): - return item.wrap(annotations=[a for a in item.annotations - if 'track_id' in a.attributes]) + return item.wrap( + annotations=[a for a in item.annotations if "track_id" in a.attributes] + ) + def _import_to_task(dataset, instance_data): tracks = {} @@ -30,7 +36,8 @@ def _import_to_task(dataset, instance_data): shift = 0 for item in dataset: frame_number = instance_data.abs_frame_id( - match_dm_item(item, instance_data, root_hint=root_hint)) + match_dm_item(item, instance_data, root_hint=root_hint) + ) track_ids = set() @@ -38,7 +45,7 @@ def _import_to_task(dataset, instance_data): if ann.type != AnnotationType.polygon: continue - track_id = ann.attributes['track_id'] + track_id = ann.attributes["track_id"] group_id = track_id if track_id in track_ids: @@ -49,22 +56,23 @@ def _import_to_task(dataset, instance_data): track_ids.add(track_id) shape = instance_data.TrackedShape( - type='polygon', + type="polygon", points=ann.points, - occluded=ann.attributes.get('occluded') is True, + occluded=ann.attributes.get("occluded") is True, outside=False, keyframe=True, z_order=ann.z_order, frame=frame_number, attributes=[], - source='manual', - group=group_id + source="manual", + group=group_id, ) # build trajectories as lists of shapes in track dict if track_id not in tracks: tracks[track_id] = instance_data.Track( - label_cat.items[ann.label].name, 0, 'manual', []) + label_cat.items[ann.label].name, 0, "manual", [] + ) tracks[track_id].shapes.append(shape) for track in tracks.values(): @@ -76,8 +84,9 @@ def _import_to_task(dataset, instance_data): for shape in track.shapes[1:]: has_skip = instance_data.frame_step < shape.frame - prev_shape.frame if has_skip and not prev_shape.outside: - prev_shape = prev_shape._replace(outside=True, - frame=prev_shape.frame + instance_data.frame_step) + prev_shape = prev_shape._replace( + outside=True, frame=prev_shape.frame + instance_data.frame_step + ) prev_shape_idx += 1 track.shapes.insert(prev_shape_idx, prev_shape) prev_shape = shape @@ -85,41 +94,45 @@ def _import_to_task(dataset, instance_data): # Append a shape with outside=True to finish the track last_shape = track.shapes[-1] - if last_shape.frame + instance_data.frame_step <= \ - int(instance_data.meta[instance_data.META_FIELD]['stop_frame']): - track.shapes.append(last_shape._replace(outside=True, - frame=last_shape.frame + instance_data.frame_step) + if last_shape.frame + instance_data.frame_step <= int( + instance_data.meta[instance_data.META_FIELD]["stop_frame"] + ): + track.shapes.append( + last_shape._replace( + outside=True, frame=last_shape.frame + instance_data.frame_step + ) ) instance_data.add_track(track) -@exporter(name='MOTS PNG', ext='ZIP', version='1.0') + +@exporter(name="MOTS PNG", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.transform(KeepTracks) # can only export tracks + dataset.transform(KeepTracks) # can only export tracks dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('boxes_to_masks') - dataset.transform('merge_instance_segments') + dataset.transform("polygons_to_masks") + dataset.transform("boxes_to_masks") + dataset.transform("merge_instance_segments") - dataset.export(temp_dir, 'mots_png', save_images=save_images) + dataset.export(temp_dir, "mots_png", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='MOTS PNG', ext='ZIP', version='1.0') + +@importer(name="MOTS PNG", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - detect_dataset(temp_dir, format_name='mots', importer=dm_env.importers.get('mots')) - dataset = Dataset.import_from(temp_dir, 'mots', env=dm_env) + detect_dataset(temp_dir, format_name="mots", importer=dm_env.importers.get("mots")) + dataset = Dataset.import_from(temp_dir, "mots", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) # Dirty way to determine instance type to avoid circular dependency - if hasattr(instance_data, '_db_project'): + if hasattr(instance_data, "_db_project"): for sub_dataset, task_data in instance_data.split_dataset(dataset): _import_to_task(sub_dataset, task_data) else: _import_to_task(dataset, instance_data) - diff --git a/cvat/apps/dataset_manager/formats/openimages.py b/cvat/apps/dataset_manager/formats/openimages.py index 51fcee29a2fb..ae299386a74a 100644 --- a/cvat/apps/dataset_manager/formats/openimages.py +++ b/cvat/apps/dataset_manager/formats/openimages.py @@ -11,8 +11,13 @@ from datumaro.util.image import DEFAULT_IMAGE_META_FILE_NAME from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - find_dataset_root, import_dm_annotations, match_dm_item) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + find_dataset_root, + import_dm_annotations, + match_dm_item, +) from cvat.apps.dataset_manager.util import make_zip_archive from .transformations import MaskToPolygonTransformation, RotatedBoxesToPolygons @@ -22,7 +27,7 @@ def find_item_ids(path): image_desc_patterns = ( OpenImagesPath.FULL_IMAGE_DESCRIPTION_FILE_NAME, - *OpenImagesPath.SUBSET_IMAGE_DESCRIPTION_FILE_PATTERNS + *OpenImagesPath.SUBSET_IMAGE_DESCRIPTION_FILE_PATTERNS, ) image_desc_patterns = ( @@ -32,29 +37,32 @@ def find_item_ids(path): for pattern in image_desc_patterns: for path in glob.glob(pattern): - with open(path, 'r') as desc: + with open(path, "r") as desc: next(desc) for row in desc: - yield row.split(',')[0] + yield row.split(",")[0] -@exporter(name='Open Images V6', ext='ZIP', version='1.0') + +@exporter(name="Open Images V6", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, task_data, save_images=False): with GetCVATDataExtractor(task_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RotatedBoxesToPolygons) - dataset.transform('polygons_to_masks') - dataset.transform('merge_instance_segments') + dataset.transform("polygons_to_masks") + dataset.transform("merge_instance_segments") - dataset.export(temp_dir, 'open_images', save_images=save_images) + dataset.export(temp_dir, "open_images", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='Open Images V6', ext='ZIP', version='1.0') + +@importer(name="Open Images V6", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) - image_meta_path = osp.join(temp_dir, OpenImagesPath.ANNOTATIONS_DIR, - DEFAULT_IMAGE_META_FILE_NAME) + image_meta_path = osp.join( + temp_dir, OpenImagesPath.ANNOTATIONS_DIR, DEFAULT_IMAGE_META_FILE_NAME + ) image_meta = None if not osp.isfile(image_meta_path): @@ -62,25 +70,30 @@ def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs item_ids = list(find_item_ids(temp_dir)) root_hint = find_dataset_root( - [DatasetItem(id=item_id) for item_id in item_ids], instance_data) + [DatasetItem(id=item_id) for item_id in item_ids], instance_data + ) for item_id in item_ids: frame_info = None try: - frame_id = match_dm_item(DatasetItem(id=item_id), - instance_data, root_hint) + frame_id = match_dm_item( + DatasetItem(id=item_id), instance_data, root_hint + ) frame_info = instance_data.frame_info[frame_id] - except Exception: # nosec + except Exception: # nosec pass if frame_info is not None: - image_meta[item_id] = (frame_info['height'], frame_info['width']) + image_meta[item_id] = (frame_info["height"], frame_info["width"]) - detect_dataset(temp_dir, format_name='open_images', importer=dm_env.importers.get('open_images')) - dataset = Dataset.import_from(temp_dir, 'open_images', - image_meta=image_meta, env=dm_env) + detect_dataset( + temp_dir, + format_name="open_images", + importer=dm_env.importers.get("open_images"), + ) + dataset = Dataset.import_from( + temp_dir, "open_images", image_meta=image_meta, env=dm_env + ) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) - - diff --git a/cvat/apps/dataset_manager/formats/pascal_voc.py b/cvat/apps/dataset_manager/formats/pascal_voc.py index a0d84b745d73..1a16d62350d8 100644 --- a/cvat/apps/dataset_manager/formats/pascal_voc.py +++ b/cvat/apps/dataset_manager/formats/pascal_voc.py @@ -11,51 +11,57 @@ from datumaro.components.dataset import Dataset from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, import_dm_annotations) -from cvat.apps.dataset_manager.formats.transformations import MaskToPolygonTransformation +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) +from cvat.apps.dataset_manager.formats.transformations import ( + MaskToPolygonTransformation, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='PASCAL VOC', ext='ZIP', version='1.1') +@exporter(name="PASCAL VOC", ext="ZIP", version="1.1") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'voc', save_images=save_images, - label_map='source') + dataset.export(temp_dir, "voc", save_images=save_images, label_map="source") make_zip_archive(temp_dir, dst_file) -@importer(name='PASCAL VOC', ext='ZIP', version='1.1') + +@importer(name="PASCAL VOC", ext="ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) # put label map from the task if not present - labelmap_file = osp.join(temp_dir, 'labelmap.txt') + labelmap_file = osp.join(temp_dir, "labelmap.txt") if not osp.isfile(labelmap_file): - labels_meta = instance_data.meta[instance_data.META_FIELD]['labels'] - labels = (label['name'] + ':::' for _, label in labels_meta) - with open(labelmap_file, 'w') as f: - f.write('\n'.join(labels)) + labels_meta = instance_data.meta[instance_data.META_FIELD]["labels"] + labels = (label["name"] + ":::" for _, label in labels_meta) + with open(labelmap_file, "w") as f: + f.write("\n".join(labels)) # support flat archive layout - anno_dir = osp.join(temp_dir, 'Annotations') + anno_dir = osp.join(temp_dir, "Annotations") if not osp.isdir(anno_dir): - anno_files = glob(osp.join(temp_dir, '**', '*.xml'), recursive=True) - subsets_dir = osp.join(temp_dir, 'ImageSets', 'Main') + anno_files = glob(osp.join(temp_dir, "**", "*.xml"), recursive=True) + subsets_dir = osp.join(temp_dir, "ImageSets", "Main") os.makedirs(subsets_dir, exist_ok=True) - with open(osp.join(subsets_dir, 'train.txt'), 'w') as subset_file: + with open(osp.join(subsets_dir, "train.txt"), "w") as subset_file: for f in anno_files: - subset_file.write(osp.splitext(osp.basename(f))[0] + '\n') + subset_file.write(osp.splitext(osp.basename(f))[0] + "\n") os.makedirs(anno_dir, exist_ok=True) for f in anno_files: shutil.move(f, anno_dir) - detect_dataset(temp_dir, format_name='voc', importer=dm_env.importers.get('voc')) - dataset = Dataset.import_from(temp_dir, 'voc', env=dm_env) + detect_dataset(temp_dir, format_name="voc", importer=dm_env.importers.get("voc")) + dataset = Dataset.import_from(temp_dir, "voc", env=dm_env) dataset = MaskToPolygonTransformation.convert_dataset(dataset, **kwargs) if load_data_callback is not None: load_data_callback(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/pointcloud.py b/cvat/apps/dataset_manager/formats/pointcloud.py index 6ddfbb495427..106611993469 100644 --- a/cvat/apps/dataset_manager/formats/pointcloud.py +++ b/cvat/apps/dataset_manager/formats/pointcloud.py @@ -7,35 +7,59 @@ from datumaro.components.dataset import Dataset -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from cvat.apps.engine.models import DimensionType from .registry import dm_env, exporter, importer -@exporter(name='Sly Point Cloud Format', ext='ZIP', version='1.0', dimension=DimensionType.DIM_3D) +@exporter( + name="Sly Point Cloud Format", + ext="ZIP", + version="1.0", + dimension=DimensionType.DIM_3D, +) def _export_images(dst_file, temp_dir, task_data, save_images=False): with GetCVATDataExtractor( - task_data, include_images=save_images, format_type='sly_pointcloud', + task_data, + include_images=save_images, + format_type="sly_pointcloud", dimension=DimensionType.DIM_3D, ) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'sly_pointcloud', save_images=save_images, allow_undeclared_attrs=True) + dataset.export( + temp_dir, + "sly_pointcloud", + save_images=save_images, + allow_undeclared_attrs=True, + ) make_zip_archive(temp_dir, dst_file) -@importer(name='Sly Point Cloud Format', ext='ZIP', version='1.0', dimension=DimensionType.DIM_3D) +@importer( + name="Sly Point Cloud Format", + ext="ZIP", + version="1.0", + dimension=DimensionType.DIM_3D, +) def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): if zipfile.is_zipfile(src_file): zipfile.ZipFile(src_file).extractall(temp_dir) - detect_dataset(temp_dir, format_name='sly_pointcloud', importer=dm_env.importers.get('sly_pointcloud')) - dataset = Dataset.import_from(temp_dir, 'sly_pointcloud', env=dm_env) + detect_dataset( + temp_dir, + format_name="sly_pointcloud", + importer=dm_env.importers.get("sly_pointcloud"), + ) + dataset = Dataset.import_from(temp_dir, "sly_pointcloud", env=dm_env) else: - dataset = Dataset.import_from(src_file.name, 'sly_pointcloud', env=dm_env) + dataset = Dataset.import_from(src_file.name, "sly_pointcloud", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/registry.py b/cvat/apps/dataset_manager/formats/registry.py index 435f7fc28425..5c0a7550f736 100644 --- a/cvat/apps/dataset_manager/formats/registry.py +++ b/cvat/apps/dataset_manager/formats/registry.py @@ -8,28 +8,45 @@ dm_env = Environment() + class _Format: - NAME = '' - EXT = '' - VERSION = '' - DISPLAY_NAME = '{NAME} {VERSION}' + NAME = "" + EXT = "" + VERSION = "" + DISPLAY_NAME = "{NAME} {VERSION}" ENABLED = True + class Exporter(_Format): def __call__(self, dst_file, temp_dir, instance_data, **options): raise NotImplementedError() + class Importer(_Format): - def __call__(self, src_file, temp_dir, instance_data, load_data_callback=None, **options): + def __call__( + self, src_file, temp_dir, instance_data, load_data_callback=None, **options + ): raise NotImplementedError() -def _wrap_format(f_or_cls, klass, name, version, ext, display_name, enabled, dimension=DimensionType.DIM_2D): + +def _wrap_format( + f_or_cls, + klass, + name, + version, + ext, + display_name, + enabled, + dimension=DimensionType.DIM_2D, +): import inspect + assert inspect.isclass(f_or_cls) or inspect.isfunction(f_or_cls) if inspect.isclass(f_or_cls): - assert hasattr(f_or_cls, '__call__') + assert hasattr(f_or_cls, "__call__") target = f_or_cls elif inspect.isfunction(f_or_cls): + class wrapper(klass): # pylint: disable=arguments-differ def __call__(self, *args, **kwargs): @@ -43,7 +60,8 @@ def __call__(self, *args, **kwargs): target.VERSION = version or klass.VERSION target.EXT = ext or klass.EXT target.DISPLAY_NAME = (display_name or klass.DISPLAY_NAME).format( - NAME=name, VERSION=version, EXT=ext) + NAME=name, VERSION=version, EXT=ext + ) assert all([target.NAME, target.VERSION, target.EXT, target.DISPLAY_NAME]) target.DIMENSION = dimension target.ENABLED = enabled @@ -64,33 +82,59 @@ def format_for(export_format, mode): return format_name -def exporter(name, version, ext, display_name=None, enabled=True, dimension=DimensionType.DIM_2D): +def exporter( + name, version, ext, display_name=None, enabled=True, dimension=DimensionType.DIM_2D +): assert name not in EXPORT_FORMATS, "Export format '%s' already registered" % name + def wrap_with_params(f_or_cls): - t = _wrap_format(f_or_cls, Exporter, - name=name, ext=ext, version=version, display_name=display_name, - enabled=enabled, dimension=dimension) + t = _wrap_format( + f_or_cls, + Exporter, + name=name, + ext=ext, + version=version, + display_name=display_name, + enabled=enabled, + dimension=dimension, + ) key = t.DISPLAY_NAME assert key not in EXPORT_FORMATS, "Export format '%s' already registered" % name EXPORT_FORMATS[key] = t return t + return wrap_with_params + IMPORT_FORMATS = {} -def importer(name, version, ext, display_name=None, enabled=True, dimension=DimensionType.DIM_2D): + + +def importer( + name, version, ext, display_name=None, enabled=True, dimension=DimensionType.DIM_2D +): def wrap_with_params(f_or_cls): - t = _wrap_format(f_or_cls, Importer, - name=name, ext=ext, version=version, display_name=display_name, - enabled=enabled, dimension=dimension) + t = _wrap_format( + f_or_cls, + Importer, + name=name, + ext=ext, + version=version, + display_name=display_name, + enabled=enabled, + dimension=dimension, + ) key = t.DISPLAY_NAME assert key not in IMPORT_FORMATS, "Import format '%s' already registered" % name IMPORT_FORMATS[key] = t return t + return wrap_with_params + def make_importer(name): return IMPORT_FORMATS[name]() + def make_exporter(name): return EXPORT_FORMATS[name]() @@ -104,6 +148,7 @@ def make_exporter(name): import cvat.apps.dataset_manager.formats.mot import cvat.apps.dataset_manager.formats.mots import cvat.apps.dataset_manager.formats.pascal_voc + # import cvat.apps.dataset_manager.formats.yolo import cvat.apps.dataset_manager.formats.imagenet import cvat.apps.dataset_manager.formats.camvid @@ -117,5 +162,15 @@ def make_exporter(name): import cvat.apps.dataset_manager.formats.lfw import cvat.apps.dataset_manager.formats.cityscapes import cvat.apps.dataset_manager.formats.openimages -#Audino Export Formats + +# Audino Export Formats import cvat.apps.dataset_manager.formats.aud_common_voice + +# Audino Import Formats +import cvat.apps.dataset_manager.formats.librispeech +import cvat.apps.dataset_manager.formats.common_voice +import cvat.apps.dataset_manager.formats.tedlium +import cvat.apps.dataset_manager.formats.Voxpopuli +import cvat.apps.dataset_manager.formats.VoxCeleb +import cvat.apps.dataset_manager.formats.VCTK_Corpus +import cvat.apps.dataset_manager.formats.LibriVox diff --git a/cvat/apps/dataset_manager/formats/tedlium.py b/cvat/apps/dataset_manager/formats/tedlium.py new file mode 100644 index 000000000000..00cae3fed7c0 --- /dev/null +++ b/cvat/apps/dataset_manager/formats/tedlium.py @@ -0,0 +1,93 @@ +import os.path as osp +import zipfile +from glob import glob +from cvat.apps.dataset_manager.bindings import InstanceLabelData +from cvat.apps.engine.serializers import LabeledDataSerializer +import cvat.apps.dataset_manager as dm +from cvat.apps.dataset_manager.task import PatchAction +from .registry import importer +from cvat.apps.engine.models import Task, Job + + +def load_anno(file_object, annotations): + if isinstance(file_object, str): + with open(file_object, "r", encoding="utf-8") as f: + content = f.read() + + lines = content.splitlines() + headers = lines[0].split("\t") + + label_data = InstanceLabelData(annotations.db_instance) + + task_id = annotations.db_instance.id + task = Task.objects.get(id=task_id) + jobs = Job.objects.filter(segment__task=task) + + for line in lines[1:]: + fields = line.split("\t") + record = dict(zip(headers, fields)) + + if "job_id" in record: + job_id = record.get("job_id") + else: + job_index_id = int(record.get("job index")) + job_id = jobs[job_index_id].id + + start = float(record.get("start", 0)) + end = float(record.get("end", 0)) + + label_name = record.get("label") + label_id = label_data._get_label_id(label_name) + + language_id_to_locale_mapping = {0: "en"} + language_id = int(record.get("language", 0)) + + spec_id = label_data._get_attribute_id(label_id, record.get("attribute_1_name")) + + shapes_data = [ + { + "type": "rectangle", + "label": record.get("label", ""), + "points": [start, start, end, end], + "frame": 0, + "occluded": False, + "z_order": 0, + "group": None, + "source": "manual", + "transcript": record.get("text", ""), + "gender": record.get("gender", ""), + "age": record.get("age", ""), + "locale": language_id_to_locale_mapping.get(language_id, ""), + "accent": record.get("accent", ""), + "emotion": record.get("emotion", ""), + "rotation": 0.0, + "label_id": label_id, + "attributes": [ + { + "spec_id": spec_id, + "value": record.get("attribute_1_value", ""), + } + ], + } + ] + + data = {"shapes": shapes_data} + + serializer = LabeledDataSerializer(data=data) + pk = int(job_id) + action = PatchAction.CREATE + + if serializer.is_valid(raise_exception=True): + data = dm.task.patch_job_data(pk, serializer.data, action) + + +@importer(name="Ted-Lium", ext="TSV, ZIP", version=" ") +def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): + is_zip = zipfile.is_zipfile(src_file) + src_file.seek(0) + if is_zip: + zipfile.ZipFile(src_file).extractall(temp_dir) + + anno_paths = glob(osp.join(temp_dir, "**", "*.tsv"), recursive=True) + for p in anno_paths: + load_anno(p, instance_data) diff --git a/cvat/apps/dataset_manager/formats/transformations.py b/cvat/apps/dataset_manager/formats/transformations.py index 99d754252378..0b37bcdf7b4e 100644 --- a/cvat/apps/dataset_manager/formats/transformations.py +++ b/cvat/apps/dataset_manager/formats/transformations.py @@ -21,22 +21,38 @@ def _rotate_point(self, p, angle, cx, cy): def transform_item(self, item): annotations = item.annotations[:] - anns = [p for p in annotations if p.type == dm.AnnotationType.bbox and p.attributes['rotation']] + anns = [ + p + for p in annotations + if p.type == dm.AnnotationType.bbox and p.attributes["rotation"] + ] for ann in anns: - rotation = math.radians(ann.attributes['rotation']) + rotation = math.radians(ann.attributes["rotation"]) x0, y0, x1, y1 = ann.points [cx, cy] = [(x0 + (x1 - x0) / 2), (y0 + (y1 - y0) / 2)] - anno_points = list(chain.from_iterable( - map(lambda p: self._rotate_point(p, rotation, cx, cy), [(x0, y0), (x1, y0), (x1, y1), (x0, y1)]) - )) + anno_points = list( + chain.from_iterable( + map( + lambda p: self._rotate_point(p, rotation, cx, cy), + [(x0, y0), (x1, y0), (x1, y1), (x0, y1)], + ) + ) + ) annotations.remove(ann) - annotations.append(dm.Polygon(anno_points, - label=ann.label, attributes=ann.attributes, group=ann.group, - z_order=ann.z_order)) + annotations.append( + dm.Polygon( + anno_points, + label=ann.label, + attributes=ann.attributes, + group=ann.group, + z_order=ann.z_order, + ) + ) return item.wrap(annotations=annotations) + class MaskConverter: @staticmethod def cvat_rle_to_dm_rle(shape, img_h: int, img_w: int) -> dm.RleMask: @@ -61,8 +77,13 @@ def cvat_rle_to_dm_rle(shape, img_h: int, img_w: int) -> dm.RleMask: # obtain RLE coco_rle = mask_utils.encode(np.asfortranarray(full_mask)) - return dm.RleMask(rle=coco_rle, label=shape.label, z_order=shape.z_order, - attributes=shape.attributes, group=shape.group) + return dm.RleMask( + rle=coco_rle, + label=shape.label, + z_order=shape.z_order, + attributes=shape.attributes, + group=shape.group, + ) @classmethod def dm_mask_to_cvat_rle(cls, dm_mask: dm.Mask) -> list[int]: @@ -100,6 +121,7 @@ def rle(cls, arr: np.ndarray) -> list[int]: return cvat_rle + class EllipsesToMasks: @staticmethod def convert_ellipse(ellipse, img_h, img_w): @@ -112,8 +134,14 @@ def convert_ellipse(ellipse, img_h, img_w): mat = np.zeros((img_h, img_w), dtype=np.uint8) cv2.ellipse(mat, center, axis, angle, 0, 360, 255, thickness=-1) rle = mask_utils.encode(np.asfortranarray(mat)) - return dm.RleMask(rle=rle, label=ellipse.label, z_order=ellipse.z_order, - attributes=ellipse.attributes, group=ellipse.group) + return dm.RleMask( + rle=rle, + label=ellipse.label, + z_order=ellipse.z_order, + attributes=ellipse.attributes, + group=ellipse.group, + ) + class MaskToPolygonTransformation: """ @@ -123,10 +151,10 @@ class MaskToPolygonTransformation: @classmethod def declare_arg_names(cls): - return ['conv_mask_to_poly'] + return ["conv_mask_to_poly"] @classmethod def convert_dataset(cls, dataset, **kwargs): - if kwargs.get('conv_mask_to_poly', True): - dataset.transform('masks_to_polygons') + if kwargs.get("conv_mask_to_poly", True): + dataset.transform("masks_to_polygons") return dataset diff --git a/cvat/apps/dataset_manager/formats/utils.py b/cvat/apps/dataset_manager/formats/utils.py index 7811fbbfc902..6392a90a13b2 100644 --- a/cvat/apps/dataset_manager/formats/utils.py +++ b/cvat/apps/dataset_manager/formats/utils.py @@ -9,6 +9,7 @@ from datumaro.util.os_util import make_file_name + def get_color_from_index(index): def get_bit(number, index): return (number >> index) & 1 @@ -22,7 +23,10 @@ def get_bit(number, index): return tuple(color) -DEFAULT_COLORMAP_PATH = osp.join(osp.dirname(__file__), 'predefined_colors.txt') + +DEFAULT_COLORMAP_PATH = osp.join(osp.dirname(__file__), "predefined_colors.txt") + + def parse_default_colors(file_path=None): if file_path is None: file_path = DEFAULT_COLORMAP_PATH @@ -31,58 +35,72 @@ def parse_default_colors(file_path=None): with open(file_path) as f: for line in f: line = line.strip() - if not line or line[0] == '#': + if not line or line[0] == "#": continue - _, label, color = line.split(':') - colors[label] = tuple(map(int, color.split(','))) + _, label, color = line.split(":") + colors[label] = tuple(map(int, color.split(","))) return colors + def normalize_label(label): - label = make_file_name(label) # basically, convert to ASCII lowercase - label = label.replace('-', '_') + label = make_file_name(label) # basically, convert to ASCII lowercase + label = label.replace("-", "_") return label + def rgb2hex(color): - return '#{0:02x}{1:02x}{2:02x}'.format(*color) + return "#{0:02x}{1:02x}{2:02x}".format(*color) + def hex2rgb(color): - return tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) + return tuple(int(color.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4)) + def make_colormap(instance_data): - labels = [label for _, label in instance_data.meta[instance_data.META_FIELD]['labels']] - label_names = [label['name'] for label in labels] - - if 'background' not in label_names: - labels.insert(0, { - 'name': 'background', - 'color': '#000000', - } + labels = [ + label for _, label in instance_data.meta[instance_data.META_FIELD]["labels"] + ] + label_names = [label["name"] for label in labels] + + if "background" not in label_names: + labels.insert( + 0, + { + "name": "background", + "color": "#000000", + }, ) - return {label['name']: [hex2rgb(label['color']), [], []] for label in labels} + return {label["name"]: [hex2rgb(label["color"]), [], []] for label in labels} + def generate_color(color, used_colors): def tint_shade_color(): for added_color in (255, 0): for factor in range(1, 10): - yield tuple(map(lambda c: int(c + (added_color - c) * factor / 10), color)) + yield tuple( + map(lambda c: int(c + (added_color - c) * factor / 10), color) + ) def get_unused_color(): def get_avg_color(index): sorted_colors = sorted(used_colors, key=operator.itemgetter(index)) - max_dist_pair = max(zip(sorted_colors, sorted_colors[1:]), - key=lambda c_pair: c_pair[1][index] - c_pair[0][index]) + max_dist_pair = max( + zip(sorted_colors, sorted_colors[1:]), + key=lambda c_pair: c_pair[1][index] - c_pair[0][index], + ) return (max_dist_pair[0][index] + max_dist_pair[1][index]) // 2 return tuple(get_avg_color(i) for i in range(3)) - #try to tint and shade color firstly + # try to tint and shade color firstly for new_color in tint_shade_color(): if new_color not in used_colors: return new_color return get_unused_color() + def get_label_color(label_name, label_colors): predefined = parse_default_colors() label_colors = tuple(hex2rgb(c) for c in label_colors if c) @@ -91,7 +109,9 @@ def get_label_color(label_name, label_colors): color = predefined.get(normalized_name, None) if color is None: - name_hash = int.from_bytes(blake2s(normalized_name.encode(), digest_size=3).digest(), byteorder="big") + name_hash = int.from_bytes( + blake2s(normalized_name.encode(), digest_size=3).digest(), byteorder="big" + ) color = get_color_from_index(name_hash) if color in label_colors: diff --git a/cvat/apps/dataset_manager/formats/velodynepoint.py b/cvat/apps/dataset_manager/formats/velodynepoint.py index 9912d0b1d67b..e373b5de8697 100644 --- a/cvat/apps/dataset_manager/formats/velodynepoint.py +++ b/cvat/apps/dataset_manager/formats/velodynepoint.py @@ -8,8 +8,11 @@ from datumaro.components.dataset import Dataset from datumaro.components.extractor import ItemTransform -from cvat.apps.dataset_manager.bindings import GetCVATDataExtractor, detect_dataset, \ - import_dm_annotations +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from .registry import dm_env from cvat.apps.dataset_manager.util import make_zip_archive @@ -17,35 +20,47 @@ from .registry import exporter, importer + class RemoveTrackingInformation(ItemTransform): def transform_item(self, item): annotations = list(item.annotations) for anno in annotations: - if hasattr(anno, 'attributes') and 'track_id' in anno.attributes: - del anno.attributes['track_id'] + if hasattr(anno, "attributes") and "track_id" in anno.attributes: + del anno.attributes["track_id"] return item.wrap(annotations=annotations) -@exporter(name='Kitti Raw Format', ext='ZIP', version='1.0', dimension=DimensionType.DIM_3D) + +@exporter( + name="Kitti Raw Format", ext="ZIP", version="1.0", dimension=DimensionType.DIM_3D +) def _export_images(dst_file, temp_dir, task_data, save_images=False): with GetCVATDataExtractor( - task_data, include_images=save_images, format_type="kitti_raw", + task_data, + include_images=save_images, + format_type="kitti_raw", dimension=DimensionType.DIM_3D, ) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) dataset.transform(RemoveTrackingInformation) - dataset.export(temp_dir, 'kitti_raw', save_images=save_images, reindex=True) + dataset.export(temp_dir, "kitti_raw", save_images=save_images, reindex=True) make_zip_archive(temp_dir, dst_file) -@importer(name='Kitti Raw Format', ext='ZIP', version='1.0', dimension=DimensionType.DIM_3D) +@importer( + name="Kitti Raw Format", ext="ZIP", version="1.0", dimension=DimensionType.DIM_3D +) def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): if zipfile.is_zipfile(src_file): zipfile.ZipFile(src_file).extractall(temp_dir) - detect_dataset(temp_dir, format_name='kitti_raw', importer=dm_env.importers.get('kitti_raw')) - dataset = Dataset.import_from(temp_dir, 'kitti_raw', env=dm_env) + detect_dataset( + temp_dir, + format_name="kitti_raw", + importer=dm_env.importers.get("kitti_raw"), + ) + dataset = Dataset.import_from(temp_dir, "kitti_raw", env=dm_env) else: - dataset = Dataset.import_from(src_file.name, 'kitti_raw', env=dm_env) + dataset = Dataset.import_from(src_file.name, "kitti_raw", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/vggface2.py b/cvat/apps/dataset_manager/formats/vggface2.py index 642171f0f8d9..623076cbb10e 100644 --- a/cvat/apps/dataset_manager/formats/vggface2.py +++ b/cvat/apps/dataset_manager/formats/vggface2.py @@ -7,29 +7,36 @@ from datumaro.components.dataset import Dataset -from cvat.apps.dataset_manager.bindings import GetCVATDataExtractor, TaskData, detect_dataset, \ - import_dm_annotations +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + TaskData, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='VGGFace2', ext='ZIP', version='1.0') +@exporter(name="VGGFace2", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'vgg_face2', save_images=save_images) + dataset.export(temp_dir, "vgg_face2", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='VGGFace2', ext='ZIP', version='1.0') + +@importer(name="VGGFace2", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) - detect_dataset(temp_dir, format_name='vgg_face2', importer=dm_env.importers.get('vgg_face2')) - dataset = Dataset.import_from(temp_dir, 'vgg_face2', env=dm_env) + detect_dataset( + temp_dir, format_name="vgg_face2", importer=dm_env.importers.get("vgg_face2") + ) + dataset = Dataset.import_from(temp_dir, "vgg_face2", env=dm_env) if isinstance(instance_data, TaskData): - dataset.transform('rename', regex=r"|([^/]+/)?(.+)|\2|") + dataset.transform("rename", regex=r"|([^/]+/)?(.+)|\2|") if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/widerface.py b/cvat/apps/dataset_manager/formats/widerface.py index 12a9bf0d21e5..1aeb25353145 100644 --- a/cvat/apps/dataset_manager/formats/widerface.py +++ b/cvat/apps/dataset_manager/formats/widerface.py @@ -7,27 +7,33 @@ from datumaro.components.dataset import Dataset -from cvat.apps.dataset_manager.bindings import GetCVATDataExtractor, detect_dataset, \ - import_dm_annotations +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, +) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer -@exporter(name='WiderFace', ext='ZIP', version='1.0') +@exporter(name="WiderFace", ext="ZIP", version="1.0") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'wider_face', save_images=save_images) + dataset.export(temp_dir, "wider_face", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='WiderFace', ext='ZIP', version='1.0') + +@importer(name="WiderFace", ext="ZIP", version="1.0") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): zipfile.ZipFile(src_file).extractall(temp_dir) - detect_dataset(temp_dir, format_name='wider_face', importer=dm_env.importers.get('wider_face')) - dataset = Dataset.import_from(temp_dir, 'wider_face', env=dm_env) + detect_dataset( + temp_dir, format_name="wider_face", importer=dm_env.importers.get("wider_face") + ) + dataset = Dataset.import_from(temp_dir, "wider_face", env=dm_env) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/formats/yolo.py b/cvat/apps/dataset_manager/formats/yolo.py index 9f0e46558117..14a197d5a1d0 100644 --- a/cvat/apps/dataset_manager/formats/yolo.py +++ b/cvat/apps/dataset_manager/formats/yolo.py @@ -8,8 +8,13 @@ from pyunpack import Archive -from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, detect_dataset, - import_dm_annotations, match_dm_item, find_dataset_root) +from cvat.apps.dataset_manager.bindings import ( + GetCVATDataExtractor, + detect_dataset, + import_dm_annotations, + match_dm_item, + find_dataset_root, +) from cvat.apps.dataset_manager.util import make_zip_archive from datumaro.components.extractor import DatasetItem from datumaro.components.project import Dataset @@ -18,37 +23,41 @@ from .registry import dm_env, exporter, importer -@exporter(name='YOLO', ext='ZIP', version='1.1') +@exporter(name="YOLO", ext="ZIP", version="1.1") def _export(dst_file, temp_dir, instance_data, save_images=False): with GetCVATDataExtractor(instance_data, include_images=save_images) as extractor: dataset = Dataset.from_extractors(extractor, env=dm_env) - dataset.export(temp_dir, 'yolo', save_images=save_images) + dataset.export(temp_dir, "yolo", save_images=save_images) make_zip_archive(temp_dir, dst_file) -@importer(name='YOLO', ext='ZIP', version='1.1') + +@importer(name="YOLO", ext="ZIP", version="1.1") def _import(src_file, temp_dir, instance_data, load_data_callback=None, **kwargs): Archive(src_file.name).extractall(temp_dir) image_info = {} - frames = [YoloExtractor.name_from_path(osp.relpath(p, temp_dir)) - for p in glob(osp.join(temp_dir, '**', '*.txt'), recursive=True)] + frames = [ + YoloExtractor.name_from_path(osp.relpath(p, temp_dir)) + for p in glob(osp.join(temp_dir, "**", "*.txt"), recursive=True) + ] root_hint = find_dataset_root( - [DatasetItem(id=frame) for frame in frames], instance_data) + [DatasetItem(id=frame) for frame in frames], instance_data + ) for frame in frames: frame_info = None try: - frame_id = match_dm_item(DatasetItem(id=frame), instance_data, - root_hint=root_hint) + frame_id = match_dm_item( + DatasetItem(id=frame), instance_data, root_hint=root_hint + ) frame_info = instance_data.frame_info[frame_id] - except Exception: # nosec + except Exception: # nosec pass if frame_info is not None: - image_info[frame] = (frame_info['height'], frame_info['width']) + image_info[frame] = (frame_info["height"], frame_info["width"]) - detect_dataset(temp_dir, format_name='yolo', importer=dm_env.importers.get('yolo')) - dataset = Dataset.import_from(temp_dir, 'yolo', - env=dm_env, image_info=image_info) + detect_dataset(temp_dir, format_name="yolo", importer=dm_env.importers.get("yolo")) + dataset = Dataset.import_from(temp_dir, "yolo", env=dm_env, image_info=image_info) if load_data_callback is not None: load_data_callback(dataset, instance_data) import_dm_annotations(dataset, instance_data) diff --git a/cvat/apps/dataset_manager/task.py b/cvat/apps/dataset_manager/task.py index 72aaccc50695..383724a16cc9 100644 --- a/cvat/apps/dataset_manager/task.py +++ b/cvat/apps/dataset_manager/task.py @@ -1062,6 +1062,7 @@ def get_audio_job_export_data(job_id, dst_file, job, temp_dir_base, temp_dir): for i, annotation in enumerate(annotations): entry = { + "job_id": job_id, "path": os.path.basename(annotation_audio_chunk_file_paths[i]), "sentence": annotation.get("transcript", ""), "age": annotation.get("age", ""), @@ -1100,6 +1101,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "chapter_id": "", "file": entry["path"], "id": str(uuid.uuid4()), @@ -1119,6 +1121,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "audio_id": str(uuid.uuid4()), "language": language_id_mapping.get(entry["locale"], None), "audio_path": entry["path"], @@ -1141,6 +1144,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "file": entry["path"], "text": entry["sentence"], "gender": entry["gender"], @@ -1159,6 +1163,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "file": entry["path"], "text": entry["sentence"], "gender": entry["gender"], @@ -1179,6 +1184,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "file": entry["path"], "text": entry["sentence"], "gender": entry["gender"], @@ -1200,6 +1206,7 @@ def convert_annotation_data_format(data, format_name): formatted_data = [] for entry in data: formatted_entry = { + "job_id": entry["job_id"], "file": entry["path"], "text": entry["sentence"], "gender": entry["gender"],