You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I run this code with my custom dataset. I add this(from data.config import custom_voc as cfg) on the top of eval.py and detection.py. However, it didn't work. Is there any clue to solve this error?
Hi, I run this code with my custom dataset. I add this(from data.config import custom_voc as cfg) on the top of eval.py and detection.py. However, it didn't work. Is there any clue to solve this error?
VGG base: [Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True), Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False), Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6)), ReLU(inplace=True), Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1)), ReLU(inplace=True)]
input channels: 128
extras layers: [Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)), Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)), Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)), Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)), Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)), Conv2d(128, 256, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))]
VGG16 output size: 35
extra layer size: 10
extra layer 0 : Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
extra layer 1 : Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
extra layer 2 : Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
extra layer 3 : Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
extra layer 4 : Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
extra layer 5 : Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
extra layer 6 : Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
extra layer 7 : Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
extra layer 8 : Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
extra layer 9 : Conv2d(128, 256, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))
Begin to build SSD-VGG...
Finished loading model!
torch.Size([1, 417044])
17
torch.Size([1, 24532, 17])
Traceback (most recent call last):
File "eval.py", line 436, in
test_net(args.save_folder, net, args.cuda, dataset,
File "eval.py", line 385, in test_net
detections = net(x).data
File "/opt/conda/envs/prac/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/data/SSD.Pytorch/ssd.py", line 105, in forward
output = self.detect.apply(17, 0, 200, 0.01, 0.45,
File "/data/SSD.Pytorch/layers/functions/detection.py", line 117, in forward
self.variance = cfg['variance']
KeyError: 'variance'
The text was updated successfully, but these errors were encountered: