-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathsegval.py
122 lines (94 loc) · 3.45 KB
/
segval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread
from utils.general import LOGGER
import numpy as np
import torch
from tqdm import tqdm
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.initialized = False
self.val = None
self.avg = None
self.sum = None
self.count = None
def initialize(self, val, weight):
self.val = val
self.avg = val
self.sum = val * weight
self.count = weight
self.initialized = True
def update(self, val, weight=1):
if not self.initialized:
self.initialize(val, weight)
else:
self.add(val, weight)
def add(self, val, weight):
self.val = val
self.sum += val * weight
self.count += weight
self.avg = self.sum / self.count
def value(self):
return self.val
def average(self):
return self.avg
def get_confusion_matrix(label, pred, size, num_class, ignore=-1):
"""
Calcute the confusion matrix by given label and pred
"""
output = pred.cpu().numpy().transpose(0, 2, 3, 1)
seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8)
seg_gt = np.asarray(
label.cpu().numpy()[:, :size[-2], :size[-1]], dtype=np.int)
ignore_index = seg_gt != ignore
seg_gt = seg_gt[ignore_index]
seg_pred = seg_pred[ignore_index]
index = (seg_gt * num_class + seg_pred).astype('int32')
label_count = np.bincount(index)
confusion_matrix = np.zeros((num_class, num_class))
for i_label in range(num_class):
for i_pred in range(num_class):
cur_index = i_label * num_class + i_pred
if cur_index < len(label_count):
confusion_matrix[i_label,
i_pred] = label_count[cur_index]
return confusion_matrix
def validate(testloader, model, numcls, criterion):
model.eval()
ave_loss = AverageMeter()
confusion_matrix = np.zeros((numcls, numcls))
s = ('%11s' * 3) % ('Images', 'Ave Loss', 'mIOU')
pbar = tqdm(testloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
with torch.no_grad():
for idx, batch in enumerate(pbar):
image, label, _, _ = batch
size = label.size()
image = image.cuda().float()/255
label = label.long().cuda()
out = model(image)
pred = out[1]
losses = criterion(pred, label)
confusion_matrix += get_confusion_matrix(label, pred, size, numcls, 255)
loss = losses.mean()
reduced_loss = loss
ave_loss.update(reduced_loss.item())
confusion_matrix = torch.from_numpy(confusion_matrix).cuda()
reduced_confusion_matrix = confusion_matrix
confusion_matrix = reduced_confusion_matrix.cpu().numpy()
pos = confusion_matrix.sum(1)
res = confusion_matrix.sum(0)
tp = np.diag(confusion_matrix)
IoU_array = (tp / np.maximum(1.0, pos + res - tp))
mean_IoU = IoU_array.mean()
LOGGER.info('%11g' * 3 % (len(testloader), ave_loss.average(), mean_IoU))
return ave_loss.average(), mean_IoU, IoU_array