From d304be2ac5575d2ec7ecf4d1bf75f1b066b19108 Mon Sep 17 00:00:00 2001 From: Vidura Ranathunga <71623511+vidura2@users.noreply.github.com> Date: Wed, 9 Oct 2024 11:32:13 +0530 Subject: [PATCH] MFRC522 updated --- src/MFRC522Extended.cpp | 1160 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 1160 insertions(+) create mode 100644 src/MFRC522Extended.cpp diff --git a/src/MFRC522Extended.cpp b/src/MFRC522Extended.cpp new file mode 100644 index 0000000..5ab783b --- /dev/null +++ b/src/MFRC522Extended.cpp @@ -0,0 +1,1160 @@ +/* + * Library extends MFRC522.h to support RATS for ISO-14443-4 PICC. + * RATS - Request for Answer To Select. + * NOTE: Please also check the comments in MFRC522Extended.h + * @author JPG-Consulting +*/ + +#include "MFRC522Extended.h" + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with PICCs +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Transmits SELECT/ANTICOLLISION commands to select a single PICC. + * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). + * On success: + * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) + * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. + * + * A PICC UID consists of 4, 7 or 10 bytes. + * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: + * UID size Number of UID bytes Cascade levels Example of PICC + * ======== =================== ============== =============== + * single 4 1 MIFARE Classic + * double 7 2 MIFARE Ultralight + * triple 10 3 Not currently in use? + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +MFRC522::StatusCode MFRC522Extended::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID. + byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size. + ) { + bool uidComplete; + bool selectDone; + bool useCascadeTag; + byte cascadeLevel = 1; + MFRC522::StatusCode result; + byte count; + byte index; + byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. + int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. + byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A + byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. + byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. + byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. + byte *responseBuffer; + byte responseLength; + + // Description of buffer structure: + // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 + // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. + // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. + // Byte 3: UID-data + // Byte 4: UID-data + // Byte 5: UID-data + // Byte 6: BCC Block Check Character - XOR of bytes 2-5 + // Byte 7: CRC_A + // Byte 8: CRC_A + // The BCC and CRC_A are only transmitted if we know all the UID bits of the current Cascade Level. + // + // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) + // UID size Cascade level Byte2 Byte3 Byte4 Byte5 + // ======== ============= ===== ===== ===== ===== + // 4 bytes 1 uid0 uid1 uid2 uid3 + // 7 bytes 1 CT uid0 uid1 uid2 + // 2 uid3 uid4 uid5 uid6 + // 10 bytes 1 CT uid0 uid1 uid2 + // 2 CT uid3 uid4 uid5 + // 3 uid6 uid7 uid8 uid9 + + // Sanity checks + if (validBits > 80) { + return STATUS_INVALID; + } + + // Prepare MFRC522 + PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. + + // Repeat Cascade Level loop until we have a complete UID. + uidComplete = false; + while (!uidComplete) { + // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. + switch (cascadeLevel) { + case 1: + buffer[0] = PICC_CMD_SEL_CL1; + uidIndex = 0; + useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes + break; + + case 2: + buffer[0] = PICC_CMD_SEL_CL2; + uidIndex = 3; + useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes + break; + + case 3: + buffer[0] = PICC_CMD_SEL_CL3; + uidIndex = 6; + useCascadeTag = false; // Never used in CL3. + break; + + default: + return STATUS_INTERNAL_ERROR; + break; + } + + // How many UID bits are known in this Cascade Level? + currentLevelKnownBits = validBits - (8 * uidIndex); + if (currentLevelKnownBits < 0) { + currentLevelKnownBits = 0; + } + // Copy the known bits from uid->uidByte[] to buffer[] + index = 2; // destination index in buffer[] + if (useCascadeTag) { + buffer[index++] = PICC_CMD_CT; + } + byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. + if (bytesToCopy) { + byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag + if (bytesToCopy > maxBytes) { + bytesToCopy = maxBytes; + } + for (count = 0; count < bytesToCopy; count++) { + buffer[index++] = uid->uidByte[uidIndex + count]; + } + } + // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits + if (useCascadeTag) { + currentLevelKnownBits += 8; + } + + // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. + selectDone = false; + while (!selectDone) { + // Find out how many bits and bytes to send and receive. + if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. + //Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC); + buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes + // Calculate BCC - Block Check Character + buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 7, &buffer[7]); + if (result != STATUS_OK) { + return result; + } + txLastBits = 0; // 0 => All 8 bits are valid. + bufferUsed = 9; + // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) + responseBuffer = &buffer[6]; + responseLength = 3; + } + else { // This is an ANTICOLLISION. + //Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC); + txLastBits = currentLevelKnownBits % 8; + count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. + index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs + buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits + bufferUsed = index + (txLastBits ? 1 : 0); + // Store response in the unused part of buffer + responseBuffer = &buffer[index]; + responseLength = sizeof(buffer) - index; + } + + // Set bit adjustments + rxAlign = txLastBits; // Having a separate variable is overkill. But it makes the next line easier to read. + PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + // Transmit the buffer and receive the response. + result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); + if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. + byte valueOfCollReg = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] + if (valueOfCollReg & 0x20) { // CollPosNotValid + return STATUS_COLLISION; // Without a valid collision position we cannot continue + } + byte collisionPos = valueOfCollReg & 0x1F; // Values 0-31, 0 means bit 32. + if (collisionPos == 0) { + collisionPos = 32; + } + if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen + return STATUS_INTERNAL_ERROR; + } + // Choose the PICC with the bit set. + currentLevelKnownBits = collisionPos; + count = (currentLevelKnownBits - 1) % 8; // The bit to modify + index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. + buffer[index] |= (1 << count); + } + else if (result != STATUS_OK) { + return result; + } + else { // STATUS_OK + if (currentLevelKnownBits >= 32) { // This was a SELECT. + selectDone = true; // No more anticollision + // We continue below outside the while. + } + else { // This was an ANTICOLLISION. + // We now have all 32 bits of the UID in this Cascade Level + currentLevelKnownBits = 32; + // Run loop again to do the SELECT. + } + } + } // End of while (!selectDone) + + // We do not check the CBB - it was constructed by us above. + + // Copy the found UID bytes from buffer[] to uid->uidByte[] + index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] + bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; + for (count = 0; count < bytesToCopy; count++) { + uid->uidByte[uidIndex + count] = buffer[index++]; + } + + // Check response SAK (Select Acknowledge) + if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). + return STATUS_ERROR; + } + // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. + result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) { + return STATUS_CRC_WRONG; + } + if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes + cascadeLevel++; + } + else { + uidComplete = true; + uid->sak = responseBuffer[0]; + } + } // End of while (!uidComplete) + + // Set correct uid->size + uid->size = 3 * cascadeLevel + 1; + + // IF SAK bit 6 = 1 then it is ISO/IEC 14443-4 (T=CL) + // A Request ATS command should be sent + // We also check SAK bit 3 is cero, as it stands for UID complete (1 would tell us it is incomplete) + if ((uid->sak & 0x24) == 0x20) { + Ats ats; + result = PICC_RequestATS(&ats); + if (result == STATUS_OK) { + // Check the ATS + if (ats.size > 0) + { + // TA1 has been transmitted? + // PPS must be supported... + if (ats.ta1.transmitted) + { + // TA1 + // 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Description + // ---+---+---+---+---+---+---+---+------------------------------------------ + // 0 | - | - | - | 0 | - | - | - | Different D for each direction supported + // 1 | - | - | - | 0 | - | - | - | Only same D for both direction supported + // - | x | x | x | 0 | - | - | - | DS (Send D) + // - | - | - | - | 0 | x | x | x | DR (Receive D) + // + // D to bitrate table + // 3 | 2 | 1 | Value + // ---+---+---+----------------------------- + // 1 | - | - | 848 kBaud is supported + // - | 1 | - | 424 kBaud is supported + // - | - | 1 | 212 kBaud is supported + // 0 | 0 | 0 | Only 106 kBaud is supported + // + // Note: 106 kBaud is always supported + // + // I have almost constant timeouts when changing speeds :( + // default never used, so only delarate + //TagBitRates ds = BITRATE_106KBITS; + //TagBitRates dr = BITRATE_106KBITS; + TagBitRates ds; + TagBitRates dr; + + //// TODO Not working at 848 or 424 + //if (ats.ta1.ds & 0x04) + //{ + // ds = BITRATE_848KBITS; + //} + //else if (ats.ta1.ds & 0x02) + //{ + // ds = BITRATE_424KBITS; + //} + //else if (ats.ta1.ds & 0x01) + //{ + // ds = BITRATE_212KBITS; + //} + //else + //{ + // ds = BITRATE_106KBITS; + //} + + if (ats.ta1.ds & 0x01) + { + ds = BITRATE_212KBITS; + } + else + { + ds = BITRATE_106KBITS; + } + + //// Not working at 848 or 424 + //if (ats.ta1.dr & 0x04) + //{ + // dr = BITRATE_848KBITS; + //} + //else if (ats.ta1.dr & 0x02) + //{ + // dr = BITRATE_424KBITS; + //} + //else if (ats.ta1.dr & 0x01) + //{ + // dr = BITRATE_212KBITS; + //} + //else + //{ + // dr = BITRATE_106KBITS; + //} + + if (ats.ta1.dr & 0x01) + { + dr = BITRATE_212KBITS; + } + else + { + dr = BITRATE_106KBITS; + } + + PICC_PPS(ds, dr); + } + } + } + } + + return STATUS_OK; +} // End PICC_Select() + +/** + * Transmits a Request command for Answer To Select (ATS). + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +MFRC522::StatusCode MFRC522Extended::PICC_RequestATS(Ats *ats) +{ + // TODO unused variable + //byte count; + MFRC522::StatusCode result; + + byte bufferATS[FIFO_SIZE]; + byte bufferSize = FIFO_SIZE; + + memset(bufferATS, 0, FIFO_SIZE); + + // Build command buffer + bufferATS[0] = PICC_CMD_RATS; + + // The CID defines the logical number of the addressed card and has a range of 0 + // through 14; 15 is reserved for future use (RFU). + // + // FSDI codes the maximum frame size (FSD) that the terminal can receive. + // + // FSDI | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9-F + // ------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+----------- + // FSD (bytes) | 16 | 24 | 32 | 40 | 48 | 64 | 96 | 128 | 256 | RFU > 256 + // + bufferATS[1] = 0x50; // FSD=64, CID=0 + + // Calculate CRC_A + result = PCD_CalculateCRC(bufferATS, 2, &bufferATS[2]); + if (result != STATUS_OK) { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + result = PCD_TransceiveData(bufferATS, 4, bufferATS, &bufferSize, NULL, 0, true); + if (result != STATUS_OK) { + PICC_HaltA(); + } + + // Set the ats structure data + ats->size = bufferATS[0]; + + // T0 byte: + // + // b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | Meaning + //----+----+----+----+----+----+----+----+--------------------------- + // 0 | ...| ...| ...| ...|... | ...| ...| Set to 0 (RFU) + // 0 | 1 | x | x | ...|... | ...| ...| TC1 transmitted + // 0 | x | 1 | x | ...|... | ...| ...| TB1 transmitted + // 0 | x | x | 1 | ...|... | ...| ...| TA1 transmitted + // 0 | ...| ...| ...| x | x | x | x | Maximum frame size (FSCI) + // + // FSCI | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9-F + // ------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+----------- + // FSC (bytes) | 16 | 24 | 32 | 40 | 48 | 64 | 96 | 128 | 256 | RFU > 256 + // + // Default FSCI is 2 (32 bytes) + if (ats->size > 0x01) + { + // TC1, TB1 and TA1 where NOT transmitted + ats->ta1.transmitted = (bool)(bufferATS[1] & 0x40); + ats->tb1.transmitted = (bool)(bufferATS[1] & 0x20); + ats->tc1.transmitted = (bool)(bufferATS[1] & 0x10); + + // Decode FSCI + switch (bufferATS[1] & 0x0F) + { + case 0x00: + ats->fsc = 16; + break; + case 0x01: + ats->fsc = 24; + break; + case 0x02: + ats->fsc = 32; + break; + case 0x03: + ats->fsc = 40; + break; + case 0x04: + ats->fsc = 48; + break; + case 0x05: + ats->fsc = 64; + break; + case 0x06: + ats->fsc = 96; + break; + case 0x07: + ats->fsc = 128; + break; + case 0x08: + // This value cannot be hold by a byte + // The reason I ignore it is that MFRC255 FIFO is 64 bytes so this is not a possible value (or atleast it shouldn't) + //ats->fsc = 256; + break; + // TODO: What to do with RFU (Reserved for future use)? + default: + break; + } + + // TA1 + if (ats->ta1.transmitted) + { + ats->ta1.sameD = (bool)(bufferATS[2] & 0x80); + ats->ta1.ds = (TagBitRates)((bufferATS[2] & 0x70) >> 4); + ats->ta1.dr = (TagBitRates)(bufferATS[2] & 0x07); + } + else + { + // Default TA1 + ats->ta1.ds = BITRATE_106KBITS; + ats->ta1.dr = BITRATE_106KBITS; + } + + // TB1 + if (ats->tb1.transmitted) + { + uint8_t tb1Index = 2; + + if (ats->ta1.transmitted) + tb1Index++; + + ats->tb1.fwi = (bufferATS[tb1Index] & 0xF0) >> 4; + ats->tb1.sfgi = bufferATS[tb1Index] & 0x0F; + } + else + { + // Defaults for TB1 + ats->tb1.fwi = 0; // TODO: Don't know the default for this! + ats->tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT) + } + + // TC1 + if (ats->tc1.transmitted) + { + uint8_t tc1Index = 2; + + if (ats->ta1.transmitted) + tc1Index++; + if (ats->tb1.transmitted) + tc1Index++; + + ats->tc1.supportsCID = (bool)(bufferATS[tc1Index] & 0x02); + ats->tc1.supportsNAD = (bool)(bufferATS[tc1Index] & 0x01); + } + else + { + // Defaults for TC1 + ats->tc1.supportsCID = true; + ats->tc1.supportsNAD = false; + } + } + else + { + // TC1, TB1 and TA1 where NOT transmitted + ats->ta1.transmitted = false; + ats->tb1.transmitted = false; + ats->tc1.transmitted = false; + + // Default FSCI + ats->fsc = 32; // Defaults to FSCI 2 (32 bytes) + + // Default TA1 + ats->ta1.sameD = false; + ats->ta1.ds = BITRATE_106KBITS; + ats->ta1.dr = BITRATE_106KBITS; + + // Defaults for TB1 + ats->tb1.transmitted = false; + ats->tb1.fwi = 0; // TODO: Don't know the default for this! + ats->tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT) + + // Defaults for TC1 + ats->tc1.transmitted = false; + ats->tc1.supportsCID = true; + ats->tc1.supportsNAD = false; + } + + memcpy(ats->data, bufferATS, bufferSize - 2); + + return result; +} // End PICC_RequestATS() + +/** + * Transmits Protocol and Parameter Selection Request (PPS) without parameter 1 + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +MFRC522::StatusCode MFRC522Extended::PICC_PPS() +{ + StatusCode result; + + byte ppsBuffer[4]; + byte ppsBufferSize = 4; + // Start byte: The start byte (PPS) consists of two parts: + // –The upper nibble(b8–b5) is set to’D'to identify the PPS. All other values are RFU. + // -The lower nibble(b4–b1), which is called the ‘card identifier’ (CID), defines the logical number of the addressed card. + ppsBuffer[0] = 0xD0; // CID is hardcoded as 0 in RATS + ppsBuffer[1] = 0x00; // PPS0 indicates whether PPS1 is present + + // Calculate CRC_A + result = PCD_CalculateCRC(ppsBuffer, 2, &ppsBuffer[2]); + if (result != STATUS_OK) { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + result = PCD_TransceiveData(ppsBuffer, 4, ppsBuffer, &ppsBufferSize, NULL, 0, true); + if (result == STATUS_OK) + { + // Enable CRC for T=CL + byte txReg = PCD_ReadRegister(TxModeReg) | 0x80; + byte rxReg = PCD_ReadRegister(RxModeReg) | 0x80; + + PCD_WriteRegister(TxModeReg, txReg); + PCD_WriteRegister(RxModeReg, rxReg); + } + + return result; +} // End PICC_PPS() + +/** + * Transmits Protocol and Parameter Selection Request (PPS) + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +MFRC522::StatusCode MFRC522Extended::PICC_PPS(TagBitRates sendBitRate, ///< DS + TagBitRates receiveBitRate ///< DR +) { + StatusCode result; + + // TODO not used + //byte txReg = PCD_ReadRegister(TxModeReg) & 0x8F; + //byte rxReg = PCD_ReadRegister(RxModeReg) & 0x8F; + + byte ppsBuffer[5]; + byte ppsBufferSize = 5; + // Start byte: The start byte (PPS) consists of two parts: + // –The upper nibble(b8–b5) is set to’D'to identify the PPS. All other values are RFU. + // -The lower nibble(b4–b1), which is called the ‘card identifier’ (CID), defines the logical number of the addressed card. + ppsBuffer[0] = 0xD0; // CID is hardcoded as 0 in RATS + ppsBuffer[1] = 0x11; // PPS0 indicates whether PPS1 is present + + // Bit 8 - Set to '0' as MFRC522 allows different bit rates for send and receive + // Bit 4 - Set to '0' as it is Reserved for future use. + //ppsBuffer[2] = (((sendBitRate & 0x03) << 4) | (receiveBitRate & 0x03)) & 0xE7; + ppsBuffer[2] = (((sendBitRate & 0x03) << 2) | (receiveBitRate & 0x03)) & 0xE7; + + // Calculate CRC_A + result = PCD_CalculateCRC(ppsBuffer, 3, &ppsBuffer[3]); + if (result != STATUS_OK) { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + result = PCD_TransceiveData(ppsBuffer, 5, ppsBuffer, &ppsBufferSize, NULL, 0, true); + if (result == STATUS_OK) + { + // Make sure it is an answer to our PPS + // We should receive our PPS byte and 2 CRC bytes + if ((ppsBufferSize == 3) && (ppsBuffer[0] == 0xD0)) { + byte txReg = PCD_ReadRegister(TxModeReg) & 0x8F; + byte rxReg = PCD_ReadRegister(RxModeReg) & 0x8F; + + // Set bit rate and enable CRC for T=CL + txReg = (txReg & 0x8F) | ((receiveBitRate & 0x03) << 4) | 0x80; + rxReg = (rxReg & 0x8F) | ((sendBitRate & 0x03) << 4) | 0x80; + rxReg &= 0xF0; //Enforce although this should be set already + + // From ConfigIsoType + //rxReg |= 0x06; + + PCD_WriteRegister(TxModeReg, txReg); + PCD_WriteRegister(RxModeReg, rxReg); + + // At 212kBps + switch (sendBitRate) { + case BITRATE_212KBITS: + { + //PCD_WriteRegister(ModWidthReg, 0x13); + PCD_WriteRegister(ModWidthReg, 0x15); + } + break; + case BITRATE_424KBITS: + { + PCD_WriteRegister(ModWidthReg, 0x0A); + } + break; + case BITRATE_848KBITS: + { + PCD_WriteRegister(ModWidthReg, 0x05); + } + break; + default: + { + PCD_WriteRegister(ModWidthReg, 0x26); // Default value + } + break; + } + + //PCD_WriteRegister(RxThresholdReg, 0x84); // ISO-14443.4 Type A (default) + //PCD_WriteRegister(ControlReg, 0x10); + + delayMicroseconds(10); + } + else + { + return STATUS_ERROR; + } + } + + return result; +} // End PICC_PPS() + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with ISO/IEC 14433-4 cards +///////////////////////////////////////////////////////////////////////////////////// + +MFRC522::StatusCode MFRC522Extended::TCL_Transceive(PcbBlock *send, PcbBlock *back) +{ + MFRC522::StatusCode result; + byte inBuffer[FIFO_SIZE]; + byte inBufferSize = FIFO_SIZE; + byte outBuffer[send->inf.size + 5]; // PCB + CID + NAD + INF + EPILOGUE (CRC) + byte outBufferOffset = 1; + byte inBufferOffset = 1; + + // Set the PCB byte + outBuffer[0] = send->prologue.pcb; + + // Set the CID byte if available + if (send->prologue.pcb & 0x08) { + outBuffer[outBufferOffset] = send->prologue.cid; + outBufferOffset++; + } + + // Set the NAD byte if available + if (send->prologue.pcb & 0x04) { + outBuffer[outBufferOffset] = send->prologue.nad; + outBufferOffset++; + } + + // Copy the INF field if available + if (send->inf.size > 0) { + memcpy(&outBuffer[outBufferOffset], send->inf.data, send->inf.size); + outBufferOffset += send->inf.size; + } + + // Is the CRC enabled for transmission? + byte txModeReg = PCD_ReadRegister(TxModeReg); + if ((txModeReg & 0x80) != 0x80) { + // Calculate CRC_A + result = PCD_CalculateCRC(outBuffer, outBufferOffset, &outBuffer[outBufferOffset]); + if (result != STATUS_OK) { + return result; + } + + outBufferOffset += 2; + } + + // Transceive the block + result = PCD_TransceiveData(outBuffer, outBufferOffset, inBuffer, &inBufferSize); + if (result != STATUS_OK) { + return result; + } + + // We want to turn the received array back to a PcbBlock + back->prologue.pcb = inBuffer[0]; + + // CID byte is present? + if (send->prologue.pcb & 0x08) { + back->prologue.cid = inBuffer[inBufferOffset]; + inBufferOffset++; + } + + // NAD byte is present? + if (send->prologue.pcb & 0x04) { + back->prologue.nad = inBuffer[inBufferOffset]; + inBufferOffset++; + } + + // Check if CRC is taken care of by MFRC522 + byte rxModeReg = PCD_ReadRegister(TxModeReg); + if ((rxModeReg & 0x80) != 0x80) { + Serial.print("CRC is not taken care of by MFRC522: "); + Serial.println(rxModeReg, HEX); + + // Check the CRC + // We need at least the CRC_A value. + if ((int)(inBufferSize - inBufferOffset) < 2) { + return STATUS_CRC_WRONG; + } + + // Verify CRC_A - do our own calculation and store the control in controlBuffer. + byte controlBuffer[2]; + MFRC522::StatusCode status = PCD_CalculateCRC(inBuffer, inBufferSize - 2, controlBuffer); + if (status != STATUS_OK) { + return status; + } + + if ((inBuffer[inBufferSize - 2] != controlBuffer[0]) || (inBuffer[inBufferSize - 1] != controlBuffer[1])) { + return STATUS_CRC_WRONG; + } + + // Take away the CRC bytes + inBufferSize -= 2; + } + + // Got more data? + if (inBufferSize > inBufferOffset) { + if ((inBufferSize - inBufferOffset) > back->inf.size) { + return STATUS_NO_ROOM; + } + + memcpy(back->inf.data, &inBuffer[inBufferOffset], inBufferSize - inBufferOffset); + back->inf.size = inBufferSize - inBufferOffset; + } else { + back->inf.size = 0; + } + + // If the response is a R-Block check NACK + if (((inBuffer[0] & 0xC0) == 0x80) && (inBuffer[0] & 0x20)) { + return STATUS_MIFARE_NACK; + } + + return result; +} +/** + * Send an I-Block (Application) + */ +MFRC522::StatusCode MFRC522Extended::TCL_Transceive(TagInfo *tag, byte *sendData, byte sendLen, byte *backData, byte *backLen) +{ + MFRC522::StatusCode result; + + PcbBlock out; + PcbBlock in; + byte outBuffer[FIFO_SIZE]; + byte outBufferSize = FIFO_SIZE; + byte totalBackLen = *backLen; + + // This command sends an I-Block + out.prologue.pcb = 0x02; + + if (tag->ats.tc1.supportsCID) { + out.prologue.pcb |= 0x08; + out.prologue.cid = 0x00; // CID is curentlly hardcoded as 0x00 + } + + // This command doe not support NAD + out.prologue.pcb &= 0xFB; + out.prologue.nad = 0x00; + + // Set the block number + if (tag->blockNumber) { + out.prologue.pcb |= 0x01; + } + + // Do we have data to send? + if (sendData && (sendLen > 0)) { + out.inf.size = sendLen; + out.inf.data = sendData; + } else { + out.inf.size = 0; + out.inf.data = NULL; + } + + // Initialize the receiving data + // TODO Warning: Value escapes the local scope + in.inf.data = outBuffer; + in.inf.size = outBufferSize; + + result = TCL_Transceive(&out, &in); + if (result != STATUS_OK) { + return result; + } + + // Swap block number on success + tag->blockNumber = !tag->blockNumber; + + if (backData && (*backLen > 0)) { + if (*backLen < in.inf.size) + return STATUS_NO_ROOM; + + *backLen = in.inf.size; + memcpy(backData, in.inf.data, in.inf.size); + } + + // Check chaining + if ((in.prologue.pcb & 0x10) == 0x00) + return result; + + // Result is chained + // Send an ACK to receive more data + // TODO: Should be checked I've never needed to send an ACK + while (in.prologue.pcb & 0x10) { + byte ackData[FIFO_SIZE]; + byte ackDataSize = FIFO_SIZE; + + result = TCL_TransceiveRBlock(tag, true, ackData, &ackDataSize); + if (result != STATUS_OK) + return result; + + if (backData && (*backLen > 0)) { + if ((*backLen + ackDataSize) > totalBackLen) + return STATUS_NO_ROOM; + + memcpy(&(backData[*backLen]), ackData, ackDataSize); + *backLen += ackDataSize; + } + } + + return result; +} // End TCL_Transceive() + +/** + * Send R-Block to the PICC. + */ +MFRC522::StatusCode MFRC522Extended::TCL_TransceiveRBlock(TagInfo *tag, bool ack, byte *backData, byte *backLen) +{ + MFRC522::StatusCode result; + + PcbBlock out; + PcbBlock in; + byte outBuffer[FIFO_SIZE]; + byte outBufferSize = FIFO_SIZE; + + // This command sends an R-Block + if (ack) + out.prologue.pcb = 0xA2; // ACK + else + out.prologue.pcb = 0xB2; // NAK + + + if (tag->ats.tc1.supportsCID) { + out.prologue.pcb |= 0x08; + out.prologue.cid = 0x00; // CID is curentlly hardcoded as 0x00 + } + + // This command doe not support NAD + out.prologue.pcb &= 0xFB; + out.prologue.nad = 0x00; + + // Set the block number + if (tag->blockNumber) { + out.prologue.pcb |= 0x01; + } + + // No INF data for R-Block + out.inf.size = 0; + out.inf.data = NULL; + + // Initialize the receiving data + // TODO Warning: Value escapes the local scope + in.inf.data = outBuffer; + in.inf.size = outBufferSize; + + result = TCL_Transceive(&out, &in); + if (result != STATUS_OK) { + return result; + } + + // Swap block number on success + tag->blockNumber = !tag->blockNumber; + + if (backData && backLen) { + if (*backLen < in.inf.size) + return STATUS_NO_ROOM; + + *backLen = in.inf.size; + memcpy(backData, in.inf.data, in.inf.size); + } + + return result; +} // End TCL_TransceiveRBlock() + +/** + * Send an S-Block to deselect the card. + */ +MFRC522::StatusCode MFRC522Extended::TCL_Deselect(TagInfo *tag) +{ + MFRC522::StatusCode result; + byte outBuffer[4]; + byte outBufferSize = 1; + byte inBuffer[FIFO_SIZE]; + byte inBufferSize = FIFO_SIZE; + + outBuffer[0] = 0xC2; + if (tag->ats.tc1.supportsCID) + { + outBuffer[0] |= 0x08; + outBuffer[1] = 0x00; // CID is hardcoded + outBufferSize = 2; + } + + result = PCD_TransceiveData(outBuffer, outBufferSize, inBuffer, &inBufferSize); + if (result != STATUS_OK) { + return result; + } + + // TODO:Maybe do some checks? In my test it returns: CA 00 (Same data as I sent to my card) + + return result; +} // End TCL_Deselect() + +///////////////////////////////////////////////////////////////////////////////////// +// Support functions +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Get the PICC type. + * + * @return PICC_Type + */ +MFRC522::PICC_Type MFRC522Extended::PICC_GetType(TagInfo *tag ///< The TagInfo returned from PICC_Select(). +) { + // http://www.nxp.com/documents/application_note/AN10833.pdf + // 3.2 Coding of Select Acknowledge (SAK) + // ignore 8-bit (iso14443 starts with LSBit = bit 1) + // fixes wrong type for manufacturer Infineon (http://nfc-tools.org/index.php?title=ISO14443A) + byte sak = tag->uid.sak & 0x7F; + switch (sak) { + case 0x04: return PICC_TYPE_NOT_COMPLETE; // UID not complete + case 0x09: return PICC_TYPE_MIFARE_MINI; + case 0x08: return PICC_TYPE_MIFARE_1K; + case 0x18: return PICC_TYPE_MIFARE_4K; + case 0x00: return PICC_TYPE_MIFARE_UL; + case 0x10: + case 0x11: return PICC_TYPE_MIFARE_PLUS; + case 0x01: return PICC_TYPE_TNP3XXX; + case 0x20: + if (tag->atqa == 0x0344) + return PICC_TYPE_MIFARE_DESFIRE; + return PICC_TYPE_ISO_14443_4; + case 0x40: return PICC_TYPE_ISO_18092; + default: return PICC_TYPE_UNKNOWN; + } +} // End PICC_GetType() + +/** + * Dumps debug info about the selected PICC to Serial. + * On success the PICC is halted after dumping the data. + * For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried. + */ +void MFRC522Extended::PICC_DumpToSerial(TagInfo *tag) +{ + MIFARE_Key key; + + // Dump UID, SAK and Type + PICC_DumpDetailsToSerial(tag); + + // Dump contents + PICC_Type piccType = MFRC522::PICC_GetType(tag->uid.sak); + switch (piccType) { + case PICC_TYPE_MIFARE_MINI: + case PICC_TYPE_MIFARE_1K: + case PICC_TYPE_MIFARE_4K: + // All keys are set to FFFFFFFFFFFFh at chip delivery from the factory. + for (byte i = 0; i < 6; i++) { + key.keyByte[i] = 0xFF; + } + PICC_DumpMifareClassicToSerial(&tag->uid, piccType, &key); + break; + + case PICC_TYPE_MIFARE_UL: + PICC_DumpMifareUltralightToSerial(); + break; + + case PICC_TYPE_ISO_14443_4: + case PICC_TYPE_MIFARE_DESFIRE: + PICC_DumpISO14443_4(tag); + Serial.println(F("Dumping memory contents not implemented for that PICC type.")); + break; + case PICC_TYPE_ISO_18092: + case PICC_TYPE_MIFARE_PLUS: + case PICC_TYPE_TNP3XXX: + Serial.println(F("Dumping memory contents not implemented for that PICC type.")); + break; + + case PICC_TYPE_UNKNOWN: + case PICC_TYPE_NOT_COMPLETE: + default: + break; // No memory dump here + } + + Serial.println(); + PICC_HaltA(); // Already done if it was a MIFARE Classic PICC. +} + +/** + * Dumps card info (UID,SAK,Type) about the selected PICC to Serial. + */ +void MFRC522Extended::PICC_DumpDetailsToSerial(TagInfo *tag ///< Pointer to TagInfo struct returned from a successful PICC_Select(). +) { + // ATQA + Serial.print(F("Card ATQA:")); + if (((tag->atqa & 0xFF00u) >> 8) < 0x10) + Serial.print(F(" 0")); + Serial.print((tag->atqa & 0xFF00u) >> 8, HEX); + if ((tag->atqa & 0x00FFu) < 0x10) + Serial.print(F("0")); + else + Serial.print(F(" ")); + Serial.println(tag->atqa & 0x00FFu, HEX); + + // UID + Serial.print(F("Card UID:")); + for (byte i = 0; i < tag->uid.size; i++) { + if (tag->uid.uidByte[i] < 0x10) + Serial.print(F(" 0")); + else + Serial.print(F(" ")); + Serial.print(tag->uid.uidByte[i], HEX); + } + Serial.println(); + + // SAK + Serial.print(F("Card SAK: ")); + if (tag->uid.sak < 0x10) + Serial.print(F("0")); + Serial.println(tag->uid.sak, HEX); + + // (suggested) PICC type + PICC_Type piccType = PICC_GetType(tag); + Serial.print(F("PICC type: ")); + Serial.println(PICC_GetTypeName(piccType)); +} // End PICC_DumpDetailsToSerial() + +/** + * Dumps memory contents of a ISO-14443-4 PICC. + */ +void MFRC522Extended::PICC_DumpISO14443_4(TagInfo *tag) +{ + // ATS + if (tag->ats.size > 0x00) { // The first byte is the ATS length including the length byte + Serial.print(F("Card ATS:")); + for (byte offset = 0; offset < tag->ats.size; offset++) { + if (tag->ats.data[offset] < 0x10) + Serial.print(F(" 0")); + else + Serial.print(F(" ")); + Serial.print(tag->ats.data[offset], HEX); + } + Serial.println(); + } + +} // End PICC_DumpISO14443_4 + +///////////////////////////////////////////////////////////////////////////////////// +// Convenience functions - does not add extra functionality +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Returns true if a PICC responds to PICC_CMD_REQA. + * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. + * + * @return bool + */ +bool MFRC522Extended::PICC_IsNewCardPresent() { + byte bufferATQA[2]; + byte bufferSize = sizeof(bufferATQA); + + // Reset baud rates + PCD_WriteRegister(TxModeReg, 0x00); + PCD_WriteRegister(RxModeReg, 0x00); + // Reset ModWidthReg + PCD_WriteRegister(ModWidthReg, 0x26); + + MFRC522::StatusCode result = PICC_RequestA(bufferATQA, &bufferSize); + + if (result == STATUS_OK || result == STATUS_COLLISION) { + tag.atqa = ((uint16_t)bufferATQA[1] << 8) | bufferATQA[0]; + tag.ats.size = 0; + tag.ats.fsc = 32; // default FSC value + + // Defaults for TA1 + tag.ats.ta1.transmitted = false; + tag.ats.ta1.sameD = false; + tag.ats.ta1.ds = MFRC522Extended::BITRATE_106KBITS; + tag.ats.ta1.dr = MFRC522Extended::BITRATE_106KBITS; + + // Defaults for TB1 + tag.ats.tb1.transmitted = false; + tag.ats.tb1.fwi = 0; // TODO: Don't know the default for this! + tag.ats.tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT) + + // Defaults for TC1 + tag.ats.tc1.transmitted = false; + tag.ats.tc1.supportsCID = true; + tag.ats.tc1.supportsNAD = false; + + memset(tag.ats.data, 0, FIFO_SIZE - 2); + + tag.blockNumber = false; + return true; + } + return false; +} // End PICC_IsNewCardPresent() + +/** + * Simple wrapper around PICC_Select. + * Returns true if a UID could be read. + * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. + * The read UID is available in the class variable uid. + * + * @return bool + */ +bool MFRC522Extended::PICC_ReadCardSerial() { + MFRC522::StatusCode result = PICC_Select(&tag.uid); + + // Backward compatibility + uid.size = tag.uid.size; + uid.sak = tag.uid.sak; + memcpy(uid.uidByte, tag.uid.uidByte, sizeof(tag.uid.uidByte)); + + return (result == STATUS_OK); +} // End