forked from databrickslabs/mosaic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuickstartNotebook.py
270 lines (182 loc) · 8.32 KB
/
QuickstartNotebook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Databricks notebook source
# MAGIC %md
# MAGIC ## Setup NYC taxi zones
# MAGIC In order to setup the data please run the notebook available at "../../data/DownloadNYCTaxiZones". </br>
# MAGIC DownloadNYCTaxiZones notebook will make sure we have New York City Taxi zone shapes available in our environment.
# COMMAND ----------
# MAGIC %pip install databricks-mosaic
# COMMAND ----------
user_name = dbutils.notebook.entry_point.getDbutils().notebook().getContext().userName().get()
raw_path = f"dbfs:/tmp/mosaic/{user_name}"
raw_taxi_zones_path = f"{raw_path}/taxi_zones"
print(f"The raw data is stored in {raw_path}")
# COMMAND ----------
# MAGIC %md
# MAGIC ## Enable Mosaic in the notebook
# MAGIC To get started, you'll need to attach the wheel to your cluster and import instances as in the cell below.
# COMMAND ----------
from pyspark.sql.functions import *
import mosaic as mos
mos.enable_mosaic(spark, dbutils)
# COMMAND ----------
# MAGIC %md ## Read polygons from GeoJson
# COMMAND ----------
# MAGIC %md
# MAGIC With the functionality Mosaic brings we can easily load GeoJSON files using spark. </br>
# MAGIC In the past this required GeoPandas in python and conversion to spark dataframe. </br>
# COMMAND ----------
neighbourhoods = (
spark.read
.option("multiline", "true")
.format("json")
.load(raw_taxi_zones_path)
.select("type", explode(col("features")).alias("feature"))
.select("type", col("feature.properties").alias("properties"), to_json(col("feature.geometry")).alias("json_geometry"))
.withColumn("geometry", mos.st_aswkt(mos.st_geomfromgeojson("json_geometry")))
)
display(
neighbourhoods
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Compute some basic geometry attributes
# COMMAND ----------
# MAGIC %md
# MAGIC Mosaic provides a number of functions for extracting the properties of geometries. Here are some that are relevant to Polygon geometries:
# COMMAND ----------
display(
neighbourhoods
.withColumn("calculatedArea", mos.st_area(col("geometry")))
.withColumn("calculatedLength", mos.st_length(col("geometry")))
# Note: The unit of measure of the area and length depends on the CRS used.
# For GPS locations it will be square radians and radians
.select("geometry", "calculatedArea", "calculatedLength")
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Read points data
# COMMAND ----------
# MAGIC %md
# MAGIC We will load some Taxi trips data to represent point data. </br>
# MAGIC We already loaded some shapes representing polygons that correspond to NYC neighbourhoods. </br>
# COMMAND ----------
tripsTable = spark.table("delta.`/databricks-datasets/nyctaxi/tables/nyctaxi_yellow`")
# COMMAND ----------
trips = (
tripsTable
.drop("vendorId", "rateCodeId", "store_and_fwd_flag", "payment_type")
.withColumn("pickup_geom", mos.st_astext(mos.st_point(col("pickup_longitude"), col("pickup_latitude"))))
.withColumn("dropoff_geom", mos.st_astext(mos.st_point(col("dropoff_longitude"), col("dropoff_latitude"))))
)
# COMMAND ----------
display(trips.select("pickup_geom", "dropoff_geom"))
# COMMAND ----------
# MAGIC %md
# MAGIC ## Spatial Joins
# COMMAND ----------
# MAGIC %md
# MAGIC We can use Mosaic to perform spatial joins both with and without Mosaic indexing strategies. </br>
# MAGIC Indexing is very important when handling very different geometries both in size and in shape (ie. number of vertices). </br>
# COMMAND ----------
# MAGIC %md
# MAGIC ### Getting the optimal resolution
# COMMAND ----------
# MAGIC %md
# MAGIC We can use Mosaic functionality to identify how to best index our data based on the data inside the specific dataframe. </br>
# MAGIC Selecting an appropriate indexing resolution can have a considerable impact on the performance. </br>
# COMMAND ----------
from mosaic import MosaicFrame
neighbourhoods_mosaic_frame = MosaicFrame(neighbourhoods, "geometry")
optimal_resolution = neighbourhoods_mosaic_frame.get_optimal_resolution(sample_fraction=0.75)
print(f"Optimal resolution is {optimal_resolution}")
# COMMAND ----------
# MAGIC %md
# MAGIC Not every resolution will yield performance improvements. </br>
# MAGIC By a rule of thumb it is always better to under-index than over-index - if not sure select a lower resolution. </br>
# MAGIC Higher resolutions are needed when we have very imbalanced geometries with respect to their size or with respect to the number of vertices. </br>
# MAGIC In such case indexing with more indices will considerably increase the parallel nature of the operations. </br>
# MAGIC You can think of Mosaic as a way to partition an overly complex row into multiple rows that have a balanced amount of computation each.
# COMMAND ----------
display(
neighbourhoods_mosaic_frame.get_resolution_metrics(sample_rows=150)
)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Indexing using the optimal resolution
# COMMAND ----------
# MAGIC %md
# MAGIC We will use mosaic sql functions to index our points data. </br>
# MAGIC Here we will use resolution 9, index resolution depends on the dataset in use.
# COMMAND ----------
tripsWithIndex = (trips
.withColumn("pickup_h3", mos.grid_pointascellid(col("pickup_geom"), lit(optimal_resolution)))
.withColumn("dropoff_h3", mos.grid_pointascellid(col("dropoff_geom"), lit(optimal_resolution)))
)
# COMMAND ----------
display(tripsWithIndex)
# COMMAND ----------
# MAGIC %md
# MAGIC We will also index our neighbourhoods using a built in generator function.
# COMMAND ----------
neighbourhoodsWithIndex = (neighbourhoods
# We break down the original geometry in multiple smaller mosaic chips, each with its
# own index
.withColumn("mosaic_index", mos.grid_tessellateexplode(col("geometry"), lit(optimal_resolution)))
# We don't need the original geometry any more, since we have broken it down into
# Smaller mosaic chips.
.drop("json_geometry", "geometry")
)
# COMMAND ----------
display(neighbourhoodsWithIndex)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Performing the spatial join
# COMMAND ----------
# MAGIC %md
# MAGIC We can now do spatial joins to both pickup and drop off zones based on geolocations in our datasets.
# COMMAND ----------
pickupNeighbourhoods = neighbourhoodsWithIndex.select(col("properties.zone").alias("pickup_zone"), col("mosaic_index"))
withPickupZone = (
tripsWithIndex.join(
pickupNeighbourhoods,
tripsWithIndex["pickup_h3"] == pickupNeighbourhoods["mosaic_index.index_id"]
).where(
# If the borough is a core chip (the chip is fully contained within the geometry), then we do not need
# to perform any intersection, because any point matching the same index will certainly be contained in
# the borough. Otherwise we need to perform an st_contains operation on the chip geometry.
col("mosaic_index.is_core") | mos.st_contains(col("mosaic_index.wkb"), col("pickup_geom"))
).select(
"trip_distance", "pickup_geom", "pickup_zone", "dropoff_geom", "pickup_h3", "dropoff_h3"
)
)
display(withPickupZone)
# COMMAND ----------
# MAGIC %md
# MAGIC We can easily perform a similar join for the drop off location.
# COMMAND ----------
dropoffNeighbourhoods = neighbourhoodsWithIndex.select(col("properties.zone").alias("dropoff_zone"), col("mosaic_index"))
withDropoffZone = (
withPickupZone.join(
dropoffNeighbourhoods,
withPickupZone["dropoff_h3"] == dropoffNeighbourhoods["mosaic_index.index_id"]
).where(
col("mosaic_index.is_core") | mos.st_contains(col("mosaic_index.wkb"), col("dropoff_geom"))
).select(
"trip_distance", "pickup_geom", "pickup_zone", "dropoff_geom", "dropoff_zone", "pickup_h3", "dropoff_h3"
)
.withColumn("trip_line", mos.st_astext(mos.st_makeline(array(mos.st_geomfromwkt(col("pickup_geom")), mos.st_geomfromwkt(col("dropoff_geom"))))))
)
display(withDropoffZone)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Visualise the results in Kepler
# COMMAND ----------
# MAGIC %md
# MAGIC For visualisation there simply aren't good options in scala. </br>
# MAGIC Luckily in our notebooks you can easily switch to python just for UI. </br>
# MAGIC Mosaic abstracts interaction with Kepler in python.
# COMMAND ----------
# MAGIC %python
# MAGIC %%mosaic_kepler
# MAGIC withDropoffZone "pickup_h3" "h3" 5000
# COMMAND ----------