-
Notifications
You must be signed in to change notification settings - Fork 4
/
dataset.py
410 lines (365 loc) · 20.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import codecs
import sqlite3
from xml.dom import minidom
# noinspection PyUnresolvedReferences
from os.path import isfile
import numpy as np
from lxml import etree
from xml.etree.ElementTree import Element, SubElement, Comment
from xml.etree import ElementTree
from geopy.distance import great_circle
from objects_and_functions import text_to_ann, ANNOT_SOURCE_DIR, get_id_to_coordinates, fmeasure_from_file
from objects_and_functions import get_coordinates
# ---------------------------------- START OF EMM CONVERSION ------------------------------------
if False:
file_ids = {}
out = codecs.open("data/Geocoding/gwn_emm.txt", mode="w", encoding="utf-8")
for file_name in text_to_ann().keys():
text = codecs.open(ANNOT_SOURCE_DIR + file_name + ".txt", encoding="utf-8")
meta_length = text.next()
link = meta_length.split("LINK:")[1].strip()
file_ids[link] = file_name + "<SEP>" + str(len(meta_length))
tree = etree.parse(u'data/EMM.xml')
root = tree.getroot()
geocoding = {}
duplicates = set()
for article in root:
link = article.find("link").text
title_length = len(article.find("title").text) + 2 # (+2) is some offset that makes no sense but must be there.
if link in file_ids:
file_id = file_ids[link].split("<SEP>")[0]
f = codecs.open("data/EMM/" + file_id + ".ann", mode="w", encoding="utf-8")
if file_id not in geocoding:
geocoding[file_id] = []
for geo in article.findall("{http://emm.jrc.it}fullgeo") + article.findall("{http://emm.jrc.it}georss"):
name = geo.text
meta_length = int(file_ids[link].split("<SEP>")[1])
for pos in geo.attrib["pos"].split(","):
if int(pos) >= title_length:
record = u"INDEX\tLOCATION " + str(int(pos) + meta_length - title_length) + u" " \
+ str(int(pos) + len(name) + meta_length - title_length) + u"\t" + name + u"\n"
if record not in duplicates:
f.write(record)
geocoding[file_id].append(geo.attrib['name'].replace(":", ",") + u",," + name + u",,"
+ geo.attrib['lat'] + u",," + geo.attrib['lon'] + u",,"
+ str(int(pos) - title_length) + u",," + str(int(pos) + len(name) - title_length) + u'||')
duplicates.add(record)
for key in sorted(geocoding.keys()):
for record in geocoding[key]:
out.write(record)
out.write(u"\n")
# ------------------------------------------ END OF EMM CONVERSION ----------------------------------------------
# --------------------------------------- START OF ANNOTATOR AGREEMENT ------------------------------------------
if False:
from bratutils import agreement as a
milan = a.DocumentCollection('data/IAA/milano/')
flora = a.DocumentCollection('data/IAA/flora/')
mina = a.DocumentCollection('data/IAA/mina/')
# ------------------ PLEASE READ -------------------------
# To run this code, you need to paste this code change into agreement.py in BratUtils at line 653
# in order to exclude the augmentation annotations and the Non_Toponym types. The code starts below:
# if not line.startswith("#") and not line.startswith("A"):
# if "Non_Toponym" not in line and "Literal_Expression" not in line and "Non_Lit_Expression" not in line:
# ann = Annotation(line)
# self.tags.append(ann)
# Line 303, add -> return text, "LITERAL", start_idx, end_idx -> This is to evaluate F-Score regardless of type.
# -------------------- THANKS ----------------------------
print(milan.compare_to_gold(flora))
print("Milan-Flora IAA")
print(milan.compare_to_gold(mina))
print("Milan-Mina IAA")
milan_geo = text_to_ann("data/IAA/milano/")
mina_geo = text_to_ann("data/IAA/mina/")
exclude = ["Non_Toponym", "Literal_Expression", "Non_Lit_Expression"]
agree, total = 0.0, 0.0
for milan_file, mina_file in zip(milan_geo, mina_geo):
assert milan_file == mina_file
for milan_ann in milan_geo[milan_file]:
gold = milan_geo[milan_file][milan_ann]
if gold.toponym_type in exclude:
continue
for mina_ann in mina_geo[mina_file]:
comp = mina_geo[mina_file][mina_ann]
if comp.toponym_type in exclude:
continue
if comp.start == gold.start and comp.end == gold.end:
total += 1
if comp.geonames_id != gold.geonames_id:
print(comp.text, comp.toponym_type)
print(comp.geonames_id, gold.geonames_id)
print(milan_file, comp.key)
print("---------------------------------")
else:
agree += 1
print("Geocoding agreement (accuracy):", agree / total)
# ----------------------------------- END OF ANNOTATOR AGREEMENT ---------------------------------------
# ------------------ PLEASE READ -------------------------
# To run the code below, you need to paste this code change into agreement.py in BratUtils at line 653
# in order to exclude the augmentation annotations and the Non_Toponym types. The code starts below:
# if not line.startswith("#") and not line.startswith("A"):
# if "Non_Toponym" not in line and "Literal_Expression" not in line and "Non_Lit_Expression" not in line:
# ann = Annotation(line)
# self.tags.append(ann)
# Uncomment line 302, start a new line 303, add this -> return text.lower(), "LITERAL", start_idx, end_idx
# This is to evaluate F-Score regardless of toponym type.
# -------------------- THANKS ----------------------------
# ------------------ START F-SCORE EVALUATION -----------------
# Take a look at the official MUC-7 Guide at http://www.aclweb.org/anthology/M98-1024
# SPACY NER
# from bratutils import agreement as a
# test = a.DocumentCollection('data/Spacy/')
# gold = a.DocumentCollection('data/GeoWebNews/')
# gold.make_gold()
# print(test.compare_to_gold(gold))
# GOOGLE NLP
# from bratutils import agreement as a
# test = a.DocumentCollection('data/Google/')
# gold = a.DocumentCollection('data/GeoWebNews/')
# gold.make_gold()
# print(test.compare_to_gold(gold))
# EMM ONLY
# from bratutils import agreement as a
# test = a.DocumentCollection('data/EMM/')
# gold = a.DocumentCollection('data/GeoWebNews/')
# gold.make_gold()
# print(test.compare_to_gold(gold))
# Precision -> cor / pos
# Recall -> cor / 2,720 (SIZE OF GeoWebNews DATASET or the size of your particular dataset if different)
# F-Score -> 2 * Precision * Recall / (Precision + Recall)
# The MUC-7 table has multiple interpretations depending on the task, please read the paper I cited above. Thanks!
# ------------------- END F-SCORE EVALUATION ------------------
# --------------------------------- Statistical Testing Code Block ------------------------------------
if False:
# McNemar's Test for Geotagging
google_ann = text_to_ann("data/Google/") # Comparing Google Cloud NLP
spacy_ann = text_to_ann("data/Spacy/") # with Spacy NLP
gold_ann = text_to_ann() # These are the gold answers/labels
table = [[0, 0], [0, 0]] # stored in this table.
for file_name in gold_ann:
for gold in gold_ann[file_name]:
toponym = gold_ann[file_name][gold]
print(toponym)
# stat = statsmodels.stats.contingency_tables.mcnemar(table, exact=False, correction=True)
# WORK IN PROGRESS...
# --------------------------------- End of Statistical Testing Code Block ------------------------------------
# ------------------------------------START OF CORPUS STATISTICS-----------------------------------------
if False:
annotations = text_to_ann()
mixed, coercion, metonymy = 0, 0, 0
embedded_lit, embedded_non_lit = 0, 0
literal_exp, non_lit_exp, literals = 0, 0, 0
literal_type, non_literal_type, total = 0, 0, 0
literal_heads, non_lit_heads, homonyms = 0, 0, 0
modifier_noun_lit, modifier_adj_lit, no_geo = 0, 0, 0
modifier_noun_non, modifier_adj_non, non_toponym = 0, 0, 0
demonym, language, has_coordinates, has_geonames = 0, 0, 0, 0
for ann in annotations:
for key in annotations[ann]:
x = annotations[ann][key]
total += 1
if x.toponym_type == "Literal_Expression":
literal_exp += 1
if x.non_locational:
non_lit_heads += 1
else:
literal_heads += 1
elif x.toponym_type == "Non_Lit_Expression":
non_lit_exp += 1
if x.non_locational:
non_lit_heads += 1
else:
literal_heads += 1
elif x.toponym_type == "Literal":
literals += 1
elif x.toponym_type == "Mixed":
mixed += 1
elif x.toponym_type == "Embedded_Literal":
embedded_lit += 1
elif x.toponym_type == "Embedded_Non_Lit":
embedded_non_lit += 1
elif x.toponym_type == "Coercion":
coercion += 1
elif x.toponym_type == "Metonymic":
metonymy += 1
elif x.toponym_type == "Literal_Modifier":
if x.modifier_type == "Noun":
modifier_noun_lit += 1
if x.modifier_type == "Adjective":
modifier_adj_lit += 1
elif x.toponym_type == "Non_Literal_Modifier":
if x.modifier_type == "Noun":
modifier_noun_non += 1
if x.modifier_type == "Adjective":
modifier_adj_non += 1
elif x.toponym_type == "Demonym":
demonym += 1
elif x.toponym_type == "Language":
language += 1
elif x.toponym_type == "Homonym":
homonyms += 1
elif x.toponym_type == "Non_Toponym":
non_toponym += 1
if x.geonames_id is not None:
if "," in x.geonames_id:
has_coordinates += 1
else:
has_geonames += 1
else:
no_geo += 1
print("------------------------------------------------------------------")
print("Total Annotations:", total)
print("Literal Expressions:", literal_exp)
print("Non_Lit Expressions:", non_lit_exp)
print("Heads (literal, non_literal):", (literal_heads, non_lit_heads))
total_minus_expressions = total - literal_exp - non_lit_exp - non_toponym
print("Total excluding Expressions and Non_Toponyms:", total_minus_expressions)
print("------------------------------------------------------------------")
print("Literals:", literals, np.around(float(literals) / total_minus_expressions, 5) * 100, "%")
print("Mixed:", mixed, np.around(float(mixed) / total_minus_expressions, 5) * 100, "%")
print("Coercion:", coercion, np.around(float(coercion) / total_minus_expressions, 5) * 100, "%")
print("Embedded Lit:", embedded_lit, np.around(float(embedded_lit) / total_minus_expressions, 5) * 100, "%")
print("Literal Mods (noun, adj):", (modifier_noun_lit, modifier_adj_lit),
(np.around(float(modifier_noun_lit) / total_minus_expressions, 5) * 100,
np.around(float(modifier_adj_lit) / total_minus_expressions, 5) * 100), "%")
group_tot = literals + mixed + coercion + modifier_noun_lit + modifier_adj_lit + embedded_lit
print("Group total:", group_tot, np.around(float(group_tot) / total_minus_expressions, 5) * 100, "%")
print("------------------------------------------------------------------")
print("Metonymy:", metonymy, np.around(float(metonymy) / total_minus_expressions, 5) * 100, "%")
print("Non_Lit Mods (noun, adj):", (modifier_noun_non, modifier_adj_non),
(np.around(float(modifier_noun_non) / total_minus_expressions, 5) * 100,
np.around(float(modifier_adj_non) / total_minus_expressions, 5) * 100), "%")
print("Demonyms:", demonym, np.around(float(demonym) / total_minus_expressions, 5) * 100, "%")
print("Language:", language, np.around(float(language) / total_minus_expressions, 5) * 100, "%")
print("Homonyms:", homonyms, np.around(float(homonyms) / total_minus_expressions, 5) * 100, "%")
print("Embedded Non_Lit:", embedded_non_lit, np.around(float(embedded_non_lit) / total_minus_expressions, 5) * 100, "%")
group_tot = homonyms + embedded_non_lit + metonymy + modifier_noun_non + modifier_adj_non + demonym + language
print("Group total:", group_tot, np.around(float(group_tot) / total_minus_expressions, 5) * 100, "%")
print("------------------------------------------------------------------")
print("Sanity Check:", demonym + language + homonyms + embedded_lit + embedded_non_lit + non_toponym +
modifier_adj_non + modifier_noun_non + modifier_adj_lit + modifier_noun_lit + metonymy +
coercion + mixed + literals + literal_exp + non_lit_exp, "should equal total above.")
print("Coordinates vs Geonames vs None:", has_coordinates, has_geonames, no_geo)
print("Non_Toponyms", non_toponym, "should equal", coercion + embedded_non_lit + embedded_lit)
print("Total files annotated:", len(annotations))
print("------------------------------------------------------------------")
# ------------------------------------END OF CORPUS STATISTICS-----------------------------------------
# -------------------------------GENERATE INPUTS FOR CAMCODER & OUTPUT THE XML DATASET---------------------------------
if False:
line_no = 0
annotations = text_to_ann()
conn = sqlite3.connect('../data/geonames.db').cursor()
f = codecs.open("data/Geocoding/gwn_full.txt", mode="w", encoding="utf-8")
root = Element('articles')
boolean = {True: u'Yes', False: u'No'}
comment = Comment('GeoWebNews Dataset by Milan Gritta et al. 2019 accompanying the publication "A Pragmatic Guide to Geoparsing Evaluation"')
root.append(comment)
for file_name in sorted(annotations.keys()):
source = codecs.open("data/GeoWebNews/" + file_name + ".txt", encoding="utf-8")
meta = source.next() # discard the first line but remember its length
meta_length = len(meta)
source = source.read() # grab the rest of the text
destination = codecs.open("data/Geocoding/files/" + str(line_no), mode="w", encoding="utf-8")
destination.write(source)
article = SubElement(root, 'article')
article.set('file', file_name)
title = SubElement(article, 'title')
title.text = meta.split("LINK:")[0].replace(u"TITLE:", u"").strip()
link = SubElement(article, 'link')
link.text = meta.split("LINK:")[1].strip()
text = SubElement(article, 'text')
text.text = source
toponyms = SubElement(article, 'toponyms')
for ann in annotations[file_name]:
annotation = annotations[file_name][ann]
toponym = SubElement(toponyms, 'toponym')
extName = SubElement(toponym, 'extractedName')
normName = SubElement(toponym, 'normalisedName')
topType = SubElement(toponym, 'type')
modType = SubElement(toponym, 'modifierType')
nonLoc = SubElement(toponym, 'nonLocational')
start = SubElement(toponym, 'start')
end = SubElement(toponym, 'end')
extName.text = annotation.text
topType.text = annotation.toponym_type
nonLoc.text = boolean[annotation.non_locational]
start.text = str(int(annotation.start) - meta_length)
end.text = str(int(annotation.end) - meta_length)
modType.text = annotation.modifier_type
if annotation.toponym_type not in ["Non_Toponym", "Non_Lit_Expression", "Literal_Expression", "Demonym",
"Homonym", "Language"] and annotation.geonames_id is not None:
assert len(annotation.geonames_id) >= 5
geonames = SubElement(toponym, 'geonamesID')
lat = SubElement(toponym, 'latitude')
lon = SubElement(toponym, 'longitude')
if u"," not in annotation.geonames_id:
data = get_id_to_coordinates(conn, annotation.geonames_id)
out = data[2] + ",," + annotation.text + ",," + str(data[0]) + ",," + str(data[1]) + ",," \
+ str(int(annotation.start) - meta_length) + ",," + str(int(annotation.end) - meta_length) + "||"
f.write(out)
normName.text = data[2]
geonames.text = annotation.geonames_id
lat.text = str(data[0])
lon.text = str(data[1])
else:
# IF YOU WOULD LIKE TO GEOCODE ALL 2,601 POSSIBLE TOPONYMS, UNCOMMENT THE CODE BELOW
# Our paper evaluates 2,401 toponyms, the ones below are REALLY HARD!!! Have a go if you wish!
# data = annotation.geonames_id.split(",")
# out = annotation.text + ",," + annotation.text + ",," + str(data[0]) + ",," + str(data[1]) + ",," \
# + str(int(annotation.start) - meta) + ",," + str(int(annotation.end) - meta) + "||"
# f.write(out)
normName.text = ""
coord = annotation.geonames_id.split(",")
lat.text = str(coord[0].strip())
lon.text = str(coord[1].strip())
f.write(u"\n")
line_no += 1
xml = minidom.parseString(ElementTree.tostring(root, 'utf-8')).toprettyxml(indent="\t")
codecs.open("data/GWN.xml", mode="w", encoding="utf-8").write(xml)
f.close()
# ------------------------------------ END OF GENERATION -----------------------------------------
# ----- This is the Ensemble Setup for Geotagging Evaluation of the NCRF++ trained model -------------
if False:
fold = "1stFold.out"
full = codecs.open("data/NCRFpp/full" + fold, encoding="utf-8")
partial = codecs.open("data/NCRFpp/partial" + fold, encoding="utf-8")
none = codecs.open("data/NCRFpp/no" + fold, encoding="utf-8")
out = codecs.open("data/NCRFpp/ensemble" + fold, mode="w", encoding="utf-8")
for f, p, n in zip(full, partial, none):
if f.strip() == u"":
out.write(f)
continue
f, p, n = f.split(" "), p.split(" "), n.split(" ")
assert f[0] == p[0] == n[0]
result = [f[1], p[1], n[1]]
label = max(set(result), key=result.count)
out.write(f[0] + u" " + label)
out.close()
fmeasure_from_file('data/NCRFpp/gold' + fold, 'data/NCRFpp/no' + fold)
# ----------------- DATABASE ALIGNMENT - CONVERTING TOPONYM COORDINATES TO GEONAMES COORDINATES ----------------
def align_database_with_geonames(file_name):
db = sqlite3.connect('../data/geonames.db').cursor()
inp = codecs.open(file_name, encoding="utf-8")
out = codecs.open(file_name + "_geonames.txt", mode="w", encoding="utf-8")
for inp_line in inp:
for annotation in inp_line.split("||")[:-1]:
annotation = annotation.split(",,")
candidates = get_coordinates(db, annotation[0].split(",")[0])
if len(candidates) == 0:
out.write(u',,'.join(annotation))
out.write(u'||')
print("No Geonames record for:", annotation[0])
continue
minDist = np.inf
lat, lon = 0, 0
for cand in candidates:
distance = great_circle((cand[0], cand[1]), (annotation[2], annotation[3])).km
if distance < minDist:
minDist = distance
lat = str(cand[0])
lon = str(cand[1])
annotation[2] = lat
annotation[3] = lon
out.write(u',,'.join(annotation))
out.write(u'||')
out.write(u'\n')
# ------------- END OF DATABASE ALIGNMENT - CONVERTING TOPONYM COORDINATES TO GEONAMES COORDINATES -------------