forked from naotokui/SpectrogramVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspec_reader.py
80 lines (64 loc) · 2.4 KB
/
spec_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import threading
import random
import tensorflow as tf
import numpy as np
import joblib
def randomize_specs(specs):
for k in range(specs.shape[0]):
file_index = random.randint(0, (specs.shape[0] - 1))
yield specs[file_index]
def return_spec(specs):
randomized_specs = randomize_specs(specs)
for spec in randomized_specs:
# Convert from -80 to 0dB to range [0,1], and add channel dimension
normalized_spec = np.expand_dims((spec + 80.0) / 80.0, 2)
yield normalized_spec
class SpectrogramReader(object):
def __init__(self,
specs,
coord,
queue_size=32):
self.specs = specs
self.coord = coord
self.threads = []
self.spec_placeholder = tf.placeholder(dtype=tf.float32, shape=None)
self.queue = tf.PaddingFIFOQueue(queue_size,
['float32'],
shapes=[(128, 126, 1)])
self.enqueue = self.queue.enqueue([self.spec_placeholder])
def dequeue(self, num_elements):
output = self.queue.dequeue_many(num_elements)
return output
def thread_main(self, sess):
stop = False
# Go through the dataset multiple times
while not stop:
iterator = return_spec(self.specs)
for spec in iterator:
if self.coord.should_stop():
stop = True
break
sess.run(self.enqueue,
feed_dict={self.spec_placeholder: spec})
def start_threads(self, sess, n_threads=1):
for _ in range(n_threads):
thread = threading.Thread(target=self.thread_main, args=(sess,))
thread.daemon = True # Thread will close when parent quits.
thread.start()
self.threads.append(thread)
return self.threads
def load_specs(filename='dataset.pkl', return_filenames=False):
print('Loading dataset.')
# with open('dataset.pkl', 'rb') as handle:
# dataset = pkl.load(handle)
dataset = joblib.load(filename)
print('Dataset loaded.')
filenames = dataset['filenames']
melspecs = dataset['melspecs']
actual_lengths = dataset['actual_lengths']
# Convert spectra to array
melspecs = np.array(melspecs)
if return_filenames:
return melspecs, filenames
else:
return melspecs