图像分类:模型基于图像数据集进行训练后,可以在给定任意图片的情况下,完成对图像的分类,分类结果仅限于数据集中所包含的类别。
相关论文-vit: Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 2021. 相关论文-swin Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo, 2021
model | type | datasets | Top1-accuracy | stage | example |
---|---|---|---|---|---|
vit | vit_base_p16 | ImageNet-1K | 83.71% | train finetune eval predict |
link link link link |
swin | swin_base_p4w7 | ImageNet-1K | 83.44% | train finetune eval predict |
link link link link |
- 数据集大小:125G,共1000个类、125万张彩色图像
- 训练集:120G,共120万张图像
- 测试集:5G,共5万张图像
- 数据格式:RGB
数据集目录格式
└─imageNet-1k
├─train # 训练数据集
└─val # 评估数据集
- Trainer接口开启训练/评估/推理:
import mindspore; mindspore.set_context(mode=0, device_id=0)
from mindformers import MindFormerBook
from mindformers.trainer import Trainer
from mindformers.tools.image_tools import load_image
# 显示Trainer的模型支持列表
MindFormerBook.show_trainer_support_model_list("image_classification")
# INFO - Trainer support model list for image_classification task is:
# INFO - ['vit_base_p16', 'swin_base_p4w7']
# INFO - -------------------------------------
# 下面以ViT模型为例,Swin同理
# 初始化trainer
vit_trainer = Trainer(
task='image_classification',
model='vit_base_p16',
train_dataset="imageNet-1k/train",
eval_dataset="imageNet-1k/val")
img = load_image("https://ascend-repo-modelzoo.obs.cn-east-2.myhuaweicloud.com/XFormer_for_mindspore/clip/sunflower.png")
# 方式1:使用现有的预训练权重进行finetune, 并使用finetune获得的权重进行eval和推理
vit_trainer.train(resume_or_finetune_from_checkpoint="mae_vit_base_p16", do_finetune=True)
vit_trainer.evaluate(eval_checkpoint=True)
predict_result = vit_trainer.predict(predict_checkpoint=True, input_data=img, top_k=3)
print(predict_result)
# 方式2: 重头开始训练,并使用训练好的权重进行eval和推理
vit_trainer.train()
vit_trainer.evaluate(eval_checkpoint=True)
predict_result = vit_trainer.predict(predict_checkpoint=True, input_data=img, top_k=3)
print(predict_result)
# 方式3: 从obs下载训练好的权重并进行eval和推理
vit_trainer.evaluate()
predict_result = vit_trainer.predict(input_data=img, top_k=3)
print(predict_result)
- pipeline接口开启快速推理
from mindformers import pipeline, MindFormerBook
from mindformers.tools.image_tools import load_image
# 显示pipeline支持的模型列表
MindFormerBook.show_pipeline_support_model_list("image_classification")
# INFO - Pipeline support model list for image_classification task is:
# INFO - ['vit_base_p16', 'swin_base_p4w7']
# INFO - -------------------------------------
# 下面以ViT模型为例,Swin同理
# pipeline初始化
from mindformers.pipeline import pipeline
from mindformers.tools.image_tools import load_image
pipeline_task = pipeline("image_classification", model='vit_base_p16')
img = load_image("https://ascend-repo-modelzoo.obs.cn-east-2.myhuaweicloud.com/XFormer_for_mindspore/clip/sunflower.png")
pipeline_result = pipeline_task(img, top_k=3)
# 输出
# [[{'score': 0.8846962, 'label': 'daisy'}, {'score': 0.005090589, 'label': 'bee'}, {'score': 0.0031510447, 'label': 'vase'}]]