You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug/ 问题描述 (Mandatory / 必填)
mms-tts-eng模型推理时报错。
Hardware Environment(Ascend/GPU/CPU) / 硬件环境:
CPU
Software Environment / 软件环境 (Mandatory / 必填):
-- MindSpore version : 2.4.0
-- MindNlp version : 0.4.0
-- Python version : 3.9.20
To Reproduce / 重现步骤 (Mandatory / 必填)
运行推理代码
frommindnlp.transformersimportVitsModel, AutoTokenizermodel=VitsModel.from_pretrained("./model/mms-tts-eng",from_pt=True)
tokenizer=AutoTokenizer.from_pretrained("./model/mms-tts-eng",from_pt=True)
text="some example text in the English language"inputs=tokenizer(text, return_tensors='ms')
output=model(**inputs).waveformimportscipyscipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output)
Expected behavior / 预期结果 (Mandatory / 必填)
生成音频文件
Screenshots/ 日志 / 截图 (Mandatory / 必填)
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\23974\AppData\Local\Temp\jieba.cache
Loading model cost 0.572 seconds.
Prefix dict has been built successfully.
Some weights of VitsModel were not initialized from the model checkpoint at ./model/mms-tts-eng and are newly initialized: ['flow.flows.0.wavenet.in_layers.0.weight', 'flow.flows.0.wavenet.in_layers.1.weight', 'flow.flows.0.wavenet.in_layers.2.weight', 'flow.flows.0.wavenet.in_layers.3.weight', 'flow.flows.0.wavenet.res_skip_layers.0.weight', 'flow.flows.0.wavenet.res_skip_layers.1.weight', 'flow.flows.0.wavenet.res_skip_layers.2.weight', 'flow.flows.0.wavenet.res_skip_layers.3.weight', 'flow.flows.1.wavenet.in_layers.0.weight', 'flow.flows.1.wavenet.in_layers.1.weight', 'flow.flows.1.wavenet.in_layers.2.weight', 'flow.flows.1.wavenet.in_layers.3.weight', 'flow.flows.1.wavenet.res_skip_layers.0.weight', 'flow.flows.1.wavenet.res_skip_layers.1.weight', 'flow.flows.1.wavenet.res_skip_layers.2.weight', 'flow.flows.1.wavenet.res_skip_layers.3.weight', 'flow.flows.2.wavenet.in_layers.0.weight', 'flow.flows.2.wavenet.in_layers.1.weight', 'flow.flows.2.wavenet.in_layers.2.weight', 'flow.flows.2.wavenet.in_layers.3.weight', 'flow.flows.2.wavenet.res_skip_layers.0.weight', 'flow.flows.2.wavenet.res_skip_layers.1.weight', 'flow.flows.2.wavenet.res_skip_layers.2.weight', 'flow.flows.2.wavenet.res_skip_layers.3.weight', 'flow.flows.3.wavenet.in_layers.0.weight', 'flow.flows.3.wavenet.in_layers.1.weight', 'flow.flows.3.wavenet.in_layers.2.weight', 'flow.flows.3.wavenet.in_layers.3.weight', 'flow.flows.3.wavenet.res_skip_layers.0.weight', 'flow.flows.3.wavenet.res_skip_layers.1.weight', 'flow.flows.3.wavenet.res_skip_layers.2.weight', 'flow.flows.3.wavenet.res_skip_layers.3.weight', 'posterior_encoder.wavenet.in_layers.0.weight', 'posterior_encoder.wavenet.in_layers.1.weight', 'posterior_encoder.wavenet.in_layers.10.weight', 'posterior_encoder.wavenet.in_layers.11.weight', 'posterior_encoder.wavenet.in_layers.12.weight', 'posterior_encoder.wavenet.in_layers.13.weight', 'posterior_encoder.wavenet.in_layers.14.weight', 'posterior_encoder.wavenet.in_layers.15.weight', 'posterior_encoder.wavenet.in_layers.2.weight', 'posterior_encoder.wavenet.in_layers.3.weight', 'posterior_encoder.wavenet.in_layers.4.weight', 'posterior_encoder.wavenet.in_layers.5.weight', 'posterior_encoder.wavenet.in_layers.6.weight', 'posterior_encoder.wavenet.in_layers.7.weight', 'posterior_encoder.wavenet.in_layers.8.weight', 'posterior_encoder.wavenet.in_layers.9.weight', 'posterior_encoder.wavenet.res_skip_layers.0.weight', 'posterior_encoder.wavenet.res_skip_layers.1.weight', 'posterior_encoder.wavenet.res_skip_layers.10.weight', 'posterior_encoder.wavenet.res_skip_layers.11.weight', 'posterior_encoder.wavenet.res_skip_layers.12.weight', 'posterior_encoder.wavenet.res_skip_layers.13.weight', 'posterior_encoder.wavenet.res_skip_layers.14.weight', 'posterior_encoder.wavenet.res_skip_layers.15.weight', 'posterior_encoder.wavenet.res_skip_layers.2.weight', 'posterior_encoder.wavenet.res_skip_layers.3.weight', 'posterior_encoder.wavenet.res_skip_layers.4.weight', 'posterior_encoder.wavenet.res_skip_layers.5.weight', 'posterior_encoder.wavenet.res_skip_layers.6.weight', 'posterior_encoder.wavenet.res_skip_layers.7.weight', 'posterior_encoder.wavenet.res_skip_layers.8.weight', 'posterior_encoder.wavenet.res_skip_layers.9.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
[WARNING] KERNEL(,4408,?):2024-11-9 15:52:50 [mindspore\ccsrc\kernel/kernel.h:916] mindspore::kernel::CheckShapeNull] For 'ReduceMin', the shape of input cannot contain zero, but got [const vector]{0}
[WARNING] KERNEL(,4408,?):2024-11-9 15:52:50 [mindspore\ccsrc\kernel/kernel.h:916] mindspore::kernel::CheckShapeNull] For 'ReduceMax', the shape of input cannot contain zero, but got [const vector]{0}
[WARNING] KERNEL(,4408,?):2024-11-9 15:52:50 [mindspore\ops\kernel\cpu\arithmetic_cpu_kernel.cc:171] mindspore::kernel::`anonymous-namespace'::ArithmeticCpuTypeFunc<float>::RunFunc] Mul output shape contain 0, output_shape: [const vector]{0, 1}[WARNING] KERNEL(,4408,?):2024-11-9 15:52:50 [mindspore\ops\kernel\cpu\arithmetic_cpu_kernel.cc:171] mindspore::kernel::`anonymous-namespace'::ArithmeticCpuTypeFunc<float>::RunFunc] Add output shape contain 0, output_shape: [const vector]{0, 1}
Describe the bug/ 问题描述 (Mandatory / 必填)
mms-tts-eng模型推理时报错。
Ascend
/GPU
/CPU
) / 硬件环境:-- MindSpore version : 2.4.0
-- MindNlp version : 0.4.0
-- Python version : 3.9.20
To Reproduce / 重现步骤 (Mandatory / 必填)
运行推理代码
Expected behavior / 预期结果 (Mandatory / 必填)
生成音频文件
Screenshots/ 日志 / 截图 (Mandatory / 必填)
Additional context / 备注 (Optional / 选填)
代码.md
The text was updated successfully, but these errors were encountered: