-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
93 lines (77 loc) · 4.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import time
from models import create_model
from data import create_dataset
from util.visualizer import Visualizer
import torch
import torchvision
import torchvision.transforms as transforms
from configs.config_train import cfg
# Create dataloaders
if cfg.dataset_mode == 'CIFAR10':
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomCrop(32, padding=5, pad_if_needed=True, fill=0, padding_mode='reflect'),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root=cfg.dataroot, train=True,
download=True, transform=transform)
dataset = torch.utils.data.DataLoader(trainset, batch_size=cfg.batch_size,
shuffle=True, num_workers=2, drop_last=True)
dataset_size = len(dataset)
print('#training images = %d' % dataset_size)
elif cfg.dataset_mode == 'CIFAR100':
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomCrop(32, padding=5, pad_if_needed=True, fill=0, padding_mode='reflect'),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR100(root=cfg.dataroot, train=True,
download=True, transform=transform)
dataset = torch.utils.data.DataLoader(trainset, batch_size=cfg.batch_size,
shuffle=True, num_workers=2, drop_last=True)
dataset_size = len(dataset)
print('#training images = %d' % dataset_size)
elif cfg.dataset_mode == 'CelebA':
dataset = create_dataset(cfg) # create a dataset given cfg.dataset_mode and other options
dataset_size = len(dataset)
print('#training images = %d' % dataset_size)
elif cfg.dataset_mode == 'OpenImage':
dataset = create_dataset(cfg) # create a dataset given cfg.dataset_mode and other options
dataset_size = len(dataset)
print('#training images = %d' % dataset_size)
else:
raise Exception('Not implemented yet')
model = create_model(cfg) # create a model given cfg.model and other options
model.setup(cfg) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(cfg) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
# Train with the Discriminator
for epoch in range(cfg.epoch_count, cfg.n_epochs + cfg.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % cfg.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += 1
epoch_iter += 1
if cfg.dataset_mode in ['CIFAR10', 'CIFAR100']:
input = data[0]
elif cfg.dataset_mode == 'CelebA':
input = data['data']
elif cfg.dataset_mode == 'OpenImage':
input = data['data']
model.set_input(input) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % cfg.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time)
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
iter_data_time = time.time()
if epoch % cfg.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, cfg.n_epochs + cfg.n_epochs_decay, time.time() - epoch_start_time))
model.update_learning_rate()