-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathb_omni_nonlinear.py
293 lines (222 loc) · 9.66 KB
/
b_omni_nonlinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import numpy as np
import os
import sys
import seaborn as sns
import scipy.spatial.distance
from matplotlib import pyplot as plt
import pandas as pd
import scipy.stats as stats
import tensorflow as tf
import scipy.io as sio
from tensorflow.examples.tutorials.mnist import input_data
import cPickle
slim=tf.contrib.slim
Bernoulli = tf.contrib.distributions.Bernoulli
#%%
def bernoulli_loglikelihood(b, log_alpha):
return b * (-tf.nn.softplus(-log_alpha)) + (1 - b) * (-log_alpha - tf.nn.softplus(-log_alpha))
def lrelu(x, alpha=0.3):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def encoder(x,b_dim,reuse=False):
#return logits #Eric Jang uses [512,256]
with tf.variable_scope("encoder") as scope:
if reuse:
scope.reuse_variables()
h2 = slim.stack(x, slim.fully_connected,[200,200],activation_fn=lrelu)
# h1 = tf.layers.dense(2. * x - 1., 200, tf.nn.relu, name="encoder_1")
# h2 = tf.layers.dense(h1, 200, tf.nn.relu, name="encoder_2")
log_alpha = tf.layers.dense(h2, b_dim, activation=None)
return log_alpha
def decoder(b,x_dim,reuse=False):
#return logits
with tf.variable_scope("decoder") as scope:
if reuse:
scope.reuse_variables()
h2 = slim.stack(b ,slim.fully_connected,[200,200],activation_fn=lrelu)
#h1 = tf.layers.dense(2. * b - 1., 200, tf.nn.relu, name="decoder_1")
#h2 = tf.layers.dense(h1, 200, tf.nn.relu, name="decoder_2")
log_alpha = tf.layers.dense(h2, x_dim, activation=None)
return log_alpha
def fun(x_star,E,prior_logit0,axis_dim=2,reuse_encoder=False,reuse_decoder=False):
'''
x_star,E are N*K*(d_x or d_b)
calculate log p(x_star|E) + log p(E) - log q(E|x_star)
axis_dim is axis for d_x or d_b
x_star is observe x; E is latent b
return elbo, N*K
'''
#log q(E|x_star), b_dim is global
log_alpha_b = encoder(x_star,b_dim,reuse=reuse_encoder)
log_q_b_given_x = bernoulli_loglikelihood(E, log_alpha_b)
# (N,K),conditional independent d_b Bernoulli
log_q_b_given_x = tf.reduce_sum(log_q_b_given_x , axis=axis_dim)
#log p(E)
prior_logit1 = tf.expand_dims(tf.expand_dims(prior_logit0,axis=0),axis=0)
prior_logit = tf.tile(prior_logit1,[tf.shape(E)[0],tf.shape(E)[1],1])
log_p_b = bernoulli_loglikelihood(E, prior_logit)
log_p_b = tf.reduce_sum(log_p_b, axis=axis_dim)
#log p(x_star|E), x_dim is global
log_alpha_x = decoder(E,x_dim,reuse=reuse_decoder)
log_p_x_given_b = bernoulli_loglikelihood(x_star, log_alpha_x)
log_p_x_given_b = tf.reduce_sum(log_p_x_given_b, axis=axis_dim)
#-ELBO
return log_q_b_given_x - (log_p_x_given_b + log_p_b)
def load_omniglot(data_file=os.getcwd()+'/omniglot.mat'):
"""Reads in Omniglot images.
Args:
binarize: whether to use the fixed binarization
Returns:
x_train: training images
x_valid: validation images
x_test: test images
"""
n_validation=1345
def reshape_data(data):
return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran')
omni_raw = sio.loadmat(data_file)
train_data = reshape_data(omni_raw['data'].T.astype('float32'))
test_data = reshape_data(omni_raw['testdata'].T.astype('float32'))
# Binarize the data with a fixed seed
np.random.seed(5)
train_data = (np.random.rand(*train_data.shape) < train_data).astype(float)
test_data = (np.random.rand(*test_data.shape) < test_data).astype(float)
shuffle_seed = 123
permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0])
train_data = train_data[permutation]
x_train = train_data[:-n_validation]
x_valid = train_data[-n_validation:]
x_test = test_data
return x_train, x_valid, x_test
def evidence(sess,data,elbo, batch_size = 100, S = 100, total_batch = None):
'''
For correct use:
ELBO for x_i must be calculated by SINGLE z sample from q(z|x_i)
'''
#from scipy.special import logsumexp
if total_batch is None:
total_batch = int(data.num_examples / batch_size)
avg_evi = 0
for j in range(total_batch):
test_xs = data.next_batch(batch_size)
elbo_accu = np.empty([batch_size,0])
for i in range(S):
elbo_i = sess.run(elbo,{x:test_xs})
elbo_accu = np.append(elbo_accu,elbo_i,axis=1)
evi0 = sess.run(tf.reduce_logsumexp(elbo_accu,axis = 1))
evi = np.mean(evi0 - np.log(S))
avg_evi += evi / total_batch
return avg_evi
#%%
tf.reset_default_graph()
b_dim = 200; x_dim = 784
eps = 1e-10
# number of sample b to calculate gen_loss,
# number of sample u to calculate inf_grads
K_u = 1; K_b = 1
lr=tf.constant(0.0001)
x = tf.placeholder(tf.float32,[None,x_dim]) #N*d_x
x_binary = tf.to_float(x > .5)
prior_logit0 = tf.get_variable("p_b_logit", dtype=tf.float32,initializer=tf.zeros([b_dim]))
N = tf.shape(x_binary)[0]
#encoder q(b|x) = log Ber(b|log_alpha_b)
#logits for bernoulli, p=sigmoid(logits)
log_alpha_b = encoder(x_binary,b_dim) #N*d_b
q_b = Bernoulli(logits=log_alpha_b) #sample K_b \bv
b_sample = q_b.sample(K_b) #K_b*N*d_b, accompanying with encoder parameter, cannot backprop
b_sample = tf.cast(tf.transpose(b_sample,perm=[1,0,2]),tf.float32) #N*K_b*d_b
#compute decoder p(x|b), gradient of decoder parameter can be automatically given by loss
x_star_b = tf.tile(tf.expand_dims(x_binary,axis=1),[1,K_b,1]) #N*K_b*d_x
#average over K_b
neg_elbo = tf.reduce_mean(fun(x_star_b,b_sample,prior_logit0,reuse_encoder=True,reuse_decoder= False),axis=1)[:,np.newaxis]
gen_loss = tf.reduce_mean(neg_elbo) #average over N
gen_opt = tf.train.AdamOptimizer(lr)
gen_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='decoder')
gen_gradvars = gen_opt.compute_gradients(gen_loss, var_list=gen_vars)
gen_train_op = gen_opt.apply_gradients(gen_gradvars)
#provide encoder q(b|x) gradient by data augmentation
u_noise = tf.random_uniform(shape=[N,K_u,b_dim],maxval=1.0) #sample K \uv
P1 = tf.tile(tf.expand_dims(tf.sigmoid(-log_alpha_b),axis=1),[1,K_u,1])
E1 = tf.cast(u_noise>P1,tf.float32)
P2 = 1 - P1
E2 = tf.cast(u_noise<P2,tf.float32)
x_star_u = tf.tile(tf.expand_dims(x_binary,axis=1),[1,K_u,1]) #N*K_u*d_x
#N*K_u
F1 = fun(x_star_u,E1,prior_logit0,reuse_encoder=True,reuse_decoder=True)
F2 = fun(x_star_u,E2,prior_logit0,reuse_encoder=True,reuse_decoder=True)
alpha_grads = tf.expand_dims(F1-F2,axis=2)*(u_noise-0.5) #N*K_u*d_b
alpha_grads = tf.reduce_mean(alpha_grads,axis=1) #N*d_b, expectation over u
inf_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='encoder')
#log_alpha_b is N*d_b, alpha_grads is N*d_b, inf_vars is d_theta
#d_theta; should be devided by batch-size, but can be absorbed into learning rate
inf_grads = tf.gradients(log_alpha_b, inf_vars, grad_ys=alpha_grads)#/b_s
inf_gradvars = zip(inf_grads, inf_vars)
inf_opt = tf.train.AdamOptimizer(lr,beta1=0.5,beta2=.99999)
inf_train_op = inf_opt.apply_gradients(inf_gradvars)
prior_train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(gen_loss,var_list=[prior_logit0])
#with tf.control_dependencies([gen_train_op, inf_train_op,prior_train_op]):
with tf.control_dependencies([gen_train_op, inf_train_op, prior_train_op]):
train_op = tf.no_op()
init_op=tf.global_variables_initializer()
#%% TRAIN
# get data
train,valid,test = load_omniglot()
from preprocess import preprocess
train_data = preprocess(train)
test_data = preprocess(test[:8000])
valid_data = preprocess(valid[:1300])
directory = os.getcwd()+'/discrete_out/'
if not os.path.exists(directory):
os.makedirs(directory)
batch_size = 20
total_points = train.shape[0]
total_batch = int(total_points / batch_size)
total_test_batch = int(test.shape[0] / batch_size)
total_valid_batch = int(valid.shape[0] / batch_size)
training_epochs = 800
display_step = total_batch
#%%
def get_loss(sess,data,total_batch):
cost_eval = []
for j in range(total_batch):
xs = data.next_batch(batch_size)
cost_eval.append(sess.run(neg_elbo,{x:xs}))
return np.mean(cost_eval)
np_lr = 0.00005
np.random.seed()
EXPERIMENT = 'OMNI_Bernoulli_ARM' + '_nonlinear_'+str(int(np.random.randint(0,100,1)))
print('Training starts....',EXPERIMENT)
print('Learning rate....',np_lr)
sess=tf.InteractiveSession()
sess.run(init_op)
step = 0
import time
start = time.time()
COUNT=[]; COST=[]; TIME=[];COST_TEST=[];COST_VALID=[];epoch_list=[];time_list=[]
evidence_r = [];
all_ = []
for epoch in range(training_epochs):
record=[]
for i in range(total_batch):
train_xs = train_data.next_batch(batch_size)
_,cost = sess.run([train_op,gen_loss],{x:train_xs,lr:np_lr})
record.append(cost)
step += 1
print(epoch,'cost=',np.mean(record),'with std=',np.std(record))
if epoch%1 == 0:
COUNT.append(step); COST.append(np.mean(record)); TIME.append(time.time()-start)
COST_VALID.append(get_loss(sess,valid_data,total_valid_batch))
if epoch%5 == 0:
avg_evi_val = evidence(sess, valid_data, -neg_elbo, batch_size, S = 100, total_batch=10)
print(epoch,'The validation NLL is', -np.round(avg_evi_val,2))
evidence_r.append(np.round(avg_evi_val,2))
COST_TEST.append(get_loss(sess,test_data,total_test_batch))
epoch_list.append(epoch)
time_list.append(time.time()-start)
all_ = [COUNT,COST,TIME,COST_TEST,COST_VALID,epoch_list,time_list,evidence_r]
cPickle.dump(all_, open(directory+EXPERIMENT, 'wb'))
print(EXPERIMENT)